E-mail Webmaster
_______________

Home
________________

________________
English Section

TI Graphing Calculators
TI Program Descriptions

Casio Graphing    Calculator

Casio Program Descriptions

Casio Programs
CFX-9850 & CFX-9750

Brief  Guides

CFX-9850 & CFX-9750
User Manual

Statistics Guide

Casio Programming Keystrokes
________________
Brief Guides Other Calculators
HP 43S Calculator

Scientific Calculators
FAQs for Scientific Calculators

===============

Sección Española

FAQs en Español
FAQs Basicos
Mas Dificil Pagina 1
Mas Dificil Pagina 2

Guías en Espaňol
TI-82 Espanol
TI-82 Estidisticas
TI-83 Plus Espanol
TI-83 Plus Estidisticas
TI-83 Plus Guía Financiera
TI-89 Titanium Guía
TI-89 Estidisticas
TI-89 Guía Financiera

Breve Guía Español
Cfx-9850 & Cfx-9750

Casio FAQs en Espanol

FAQs en Espanol
________________
Programs at Other Sites

CASIO INTERACTIVE MATRIX ROW OPERATIONS

This is a program for the Casio Cfx-9850 Plus that does individual row operations on matrices

This program and its companion program for the TI-82/83 were written as aids in teaching students the method of doing Gauss and Gauss-Jordan elimination without the confusion of two different calculators and without getting students bogged down in arithmetic. The student selects the type of row operation from a menu and then tells the calculator what multiplier and/or what rows are involved. The calculator displays the matrix (matrix A is used) with the completed operations.

Although the syntax of this program is different from the program for the TI-83, what the user sees within the program will be very similar with the two calculators. So the instructor/tutor can use this when teaching a group that has both types of calculators.

What's new in V1.1?  I have included a menu item, #5, that allows multiplying two rows by a constant and then adding the rows.  This is convenient for avoiding fractions.  In V1.0, this could be done by using the multiply, *row, and the *row+ functions in sequence, but most students seemed not to recognize that.    I have also changed the working matrix from A to B, but the data is still entered into matrix A.

SNYTAX NOTE: The symbol => is not equal to or greater than, but is the symbol obtained by [SHIFT], [PRGM],[F3],[F3]. The symbol ∆ is not a triangle, but the symbol obtained by [SHIFT], [PRGM],[F3].

DISCLAIMER:  This program is free, and, therefore, I make no claims about it's efficacy, efficiency, or proper operation.  If you find a problem with this program, or can suggest an improvement, please e-mail me at knosummath@aol.com  .

Memory Usage:  This program uses 433 bytes of memory.  I estimate it will take an inexperienced programmer about 20 minutes to enter this program by hand.

Use of this Program:  You may use this program freely for your own personal use and for the use of other students, but use for publication or any means of profit requires my permission.

Enter the following for the program:

 CODE ENTRY FIRST LEVEL NEXT LEVEL(S) CMTRWOP2 SHIFT, ALPHA Enter Text (Cancel APLHA for numbers.) "V1.1 FKizer" SHIFT; ALPHA Enter Text Mat A →Mat B OPTN F2;F1; A;® F2;F1;B Lbl 0 SHIFT; PRGM F3;F1; 0 Mat B∆ OPTN SHIFT; PRGM F2; F1; A; F5 " 1 SWP ROWS" SHIFT; ALPHA Enter Test & Numbers "2 MULTIPLY" SHIFT; ALPHA Enter Test & Numbers "3 ADD ROWS" SHIFT; ALPHA Enter Test & Numbers "4 N * RW A + RW B" SHIFT; ALPHA Enter text & Characters "5  N*RW A + M * RW B" "6 STRT OVER" SHIFT; ALPHA Enter Text & Numbers "7 QUIT" SHIFT; ALPHA Enter Text & Numbers ?→V SHIFT; PRGM ALPHA F4; ® V V = 1=> Goto 1 ALPHA SHIFT, PRGM V F6;F3;F1;1;EXIT;F6;F3;F2;1 V = 2 =>Goto 2 ALPHA SHIFT, PRGM V F6;F3;F1;2;EXIT;F6;F3;F2;2 V = 3 => Goto 3 ALPHA SHIFT, PRGM V F6;F3;F1;3;EXIT;F6;F3;F2;3 V = 4 =>Goto 4 ALPHA SHIFT, PRGM V F6;F3;F1;4;EXIT;F6;F3;F2;4 V = 5=> Goto 5 ALPHA SHIFT, PRGM V F6;F3;F1;5;EXIT;F6;F3;F2;5 V = 6 =>Goto 6 ALPHA SHIFT, PRGM V F6;F3;F1;6;EXIT;F6;F3;F2;6 V=7=>Toto 7 Lbl 1 SHIFT; PRGM F3;F1; 1 "ENTR 1ST ROW NO"?→J SHIFT; ALPHA SHIFT; PRGM Enter Text & Numbers F4;® J "ENTR 2ND ROW NO "?→K SHIFT; ALPHA SHIFT; PRGM Enter Text & Numbers F4;® K Swap B, J, K SHIFT; PRGM; EXIT; ALPHA F2; F1 Enter commas & Letters Goto 0 SHIFT, PRGM F3;F2;0 Lbl 2 SHIFT; PRGM F3;F1; 2 "ENTR MULTPLER"?→N SHIFT; ALPHA SHIFT; PRGM Enter Text & Numbers F4;® N "ENTR ROW NO"? →J SHIFT; ALPHA SHIFT; PRGM Enter Text & Numbers F4;® J *row N, B, J SHIFT; PRGM;EXIT ALPHA F4;F2; F2 Enter commas & Letters Goto 0 SHIFT, PRGM F3;F2;0 Lbl 3 SHIFT; PRGM F3;F1; 3 "ENTR 1ST ROW NO"?→J SHIFT; ALPHA SHIFT; PRGM Enter Text & Numbers F4;® J "ENTR 2ND ROW NO "?→K SHIFT; ALPHA SHIFT; PRGM Enter Text & Numbers F4;® K row+ B,J,K SHIFT; PRGM;EXIT ALPHA F4;F2; F4 Enter commas & Letters Goto 0 SHIFT, PRGM F3;F2;0 Lbl 4 SHIFT; PRGM F3;F1; 4 "ENTR MULTPLER"?→N SHIFT; ALPHA SHIFT; PRGM Enter Text & Numbers F4;® N "ENTR 1ST ROW NO"?→J SHIFT; ALPHA SHIFT; PRGM Enter Text & Numbers F4;® J "ENTR 2ND ROW NO "?→K SHIFT; ALPHA SHIFT; PRGM Enter Text & Numbers F4;® K *row+ N,B,J,K SHIFT; PRGM;EXIT ALPHA F4;F2; F3 Enter commas & Letters Goto 0 SHIFT, PRGM F3;F2;0 Lbl 5 "ENTR 1ST  MULTPLER"?→N "ENTR 1ST ROW NO"?→J "ENTR 2ND  MULTPLER"?→M "ENTR 2ND  ROW NO"?→K *row M, B, K *row+ N,B,J,K Goto 0 Lbl 6 SHIFT; PRGM F3;F1; 5 Mat A→Mat B OPTN F2;F1; B;® F2;F1;A Goto 0 SHIFT, PRGM F3;F2;0 Lbl 7 SHIFT; PRGM F3;F1; 6 Stop SHIFT; PRGM F2;F4

Now, let's do a matrix to make sure everything is okay.

NOTE: We're not going to try to develop any clever strategy on this matrix. To minimize error propagation, we're are going to try to avoid fractions as long as possible. The format for my "shorthand" instructions will be this order; menu item number, multiplier, first row, second row. If you get mixed up, start over by using menu item 6. That'll restore the original matrix in [B].  Alternatively, from the beginning, you could enter the matrix in [C]; then transfer it to [A] using these commands from the home screen: SHIFT; PRGM; F2;F1;ALPHA, C,® F1;A. Then if you get mixed up you can start over just by transferring from [C] to [A] again.

Enter this matrix in [A]:

[ 2 1 -2 |1]
[-1 1 -3 |0]
[ 4 3   0  |4]

(Read the instructions down the left side; then down the right.)