go to page number 1 2 3 4 5 6 7 8 9 10 11 12 13 14



[ Znidarsic conducts a cryogenic cold fusion experiment. ] This author conducts a cryogenic zero point energy experiment.
The results were published by Hal Fox in "New Energy News vol 5 pg #19.


In the mid 1970s Ray Frank (the owner and president of the Apparatus Engineering Company one of my former employers) assigned this author the task of building a ground monitoring relay. In an effort to complete this assignment, I began to experiment with coils, current transformers, and magnetic amplifiers. I succeeded in developing the device. We sold many hundreds of them to many mining companies. I applied the knowledge that I gained to the design of an electronic levitational device. To my dismay, I discovered that no combination of electrical coils would induce a gravitational field.

In the mid 1980's, a friend, Tom C. Frank, gave me the book, "THE QUEST FOR ABSOLUTE ZERO" by Kurt Mendelssohn. In his book, Mendelssohn disclosed that the relationship between the forces changed at cryogenic temperatures. This was the clue that I needed. Things began to come together. In 1989, I wrote my first book on the subject, "Elementary Antigravity". This book caught the eye of Ronald Madison , a far sighted manager at the Pennsylvania Electric Company (my past employer). In 1991, Ron persuaded me to go to Texas and visit with Dr. Harold Puthoff . Puthoff's work is based on the ideas of Andrei Sakharov. My work is based of the work of Kurt Mendelssohn. It is truly astounding that Puthoff and I, each following separate paths, independently arrived at almost the same conclusions.

Prior to meeting Puthoff, I knew that the relationship between the forces changed in condensed cryogenic systems. Puthoff explained that the phenomena that I had discovered was the zero point interaction. Zero point interactions have now been discovered other non-cryogenic condensed systems. Zero point phenomena are exhibited in cold fusion cells and in the gravitomagnetic effects produced by rotating superconductors.

Pg_2 UP


In 1989 this author came out with his first book "Elementary Antigravity". In chapter 10 of this book the relationship between the forces within cryogenic systems was examined. In 1996 an intermediate version of this material was published in the "Journal of New Energy" Vol 1, No 2. The remainder of this chapter is essentially a rewrite of these two works. As then, the study of cryogenic phenomena is very instructive. A better understanding of all zero point technologies can be gained through the study of cryogenic phenomena.
" Zero point energy is the energy that remains after a substance is cooled to absolute zero. "   Dr. Hal Puthoff

Pg_3 UP


It is well known that superconductors offer no resistance to electrical currents. Less well known, but even more amazing, are the low temperature superfluids. These fluids flow without friction. Once set into motion, they never slow down. Quantum interactions are limited to atomic distances in normal substances. In superconductors and superfluids quantum interactions are observed on a macroscopic scale. The normal interaction of the magnetic and electric field is very different in a superconductor. In normal conductors changing fields are required to induce other fields. In superconductors static fields can also induce other fields.1 At the root of these effects lies a dramatic change in the permittivity and permeability of a superconductor (electron condensation). Ordinarily this change only effects the electromagnetic field. This author has developed techniques to coerce the gravitational and nuclear forces to participate in the condensation. A new look at the electromagnetic effects will lead to a deeper understanding of the the zero point interaction.

Pg_4 UP


The electric field of an isolated electric charge is that of a monopole. Dr. George Mathous, instructor at the Indiana University at Pennsylvania, commonly described the electric field of an isolated charge by stating, "The field drops off with the square of the distance and does not saturate." In lay words this means that the field diverges outward and extends to infinity.



It is instructive to look at the range and the strength of the electric field. The range of the field associated with an isolated electric charge is infinite. Isolation requires resistance. The electrical resistance of a superconductor is zero. No isolated charges can exist within a superconductor. The infinite permittivity of a superconductor confines the electric field within the superconductor. No leakage flux escapes. The maximum range of the electric field equals the length of the superconductor.


Mangetic flux lines surround atoms and nucleons. The length of the shortest of these flux lines is measured in Fermi meters. The magnetic permeability of a superconductor is zero. All magnetic flux lines are expelled. This phenomena is known as the Meissner effect. The minimum range of the magnetic field equals the circumference of the superconductor.

Pg_5 UP


The infinite permittivity and permeability of superconductors also effects the quantum forces. The quantum forces normally have a very short range of interaction. This range is confined to atomic dimensions. Quantum interactions are observed on a macroscopic scale in superconductors and superfluids. Superconductors only accept currents that are integer multiples of one another. Superfluid helium will spin in a small cup only at certain rotational speeds. These low temperature phenomena vividly demonstrate that the range of the quantum interaction has increased to macroscopic dimensions.

[Lecture at UIUC]

[WAVE audio file Pick the icon to hear a quote from the lecture at the University of Illinois. File type wave. September 1999

A main point. Pick to view a chart that shows how the range of force interaction changes in a vibrationally reinforced condensate.

Moses Chan and Eun-Seong Kim cooled and compressed helium and discovered a new phase of matter. They produced the first supersolid. 8 The results surprised the physics community. Parts of the solid mass passed through other parts of the solid mass without friction. Friction is produced by the interaction of the electrical forces that bind solids together. These electrical forces are known as Columbic potentials. The individual Columbic potentials of normal matter become smoothed out in a supersolid. The electrical forces act in unity to produce a smooth frictionless surface. Nuclear fusion is regulated by the Columbic potential of the nucleus. The Columbic potential of the nucleus is also smoothed out in certain Bose condensates. Nuclear fusion can progress by unusual routes in these condensates.

Pg_6 UP


This author attended the American Nuclear Society's Low Level Nuclear Reaction Conference in June of 1997. The conference was held at the Marriot World Trade Center in Orlando. At that conference James Patterson presented his new composite beads. These beads reduce the radioactivity of nuclear waste. George Miley described his discovery of heavy element transmutations within the CETI beads. The discovery of heavy element transmutations has given the field a new name. It is no longer called "cold fusion." The process is now called "low level nuclear transmutation".

The nucleus is surrounded by a strong positive charge. This charge strongly repels other nucleons. Conventional wisdom has it that the only way to get two nucleons to fuse together is to overcome this repulsive effect. In hot fusion scientists have been attempting (for 50 years now) to fuse nucleons together by hurtling them at each other a high speed. The nucleons must obtain at least ten thousand electron volts of velocity to overcome the electrostatic barrier. The process of surmounting the repulsive electrostatic barrier is akin to traveling swiftly over a huge speed bump. In the case of the speed bump, a loud crash will be produced. In the case of the electrostatic barrier, gamma and X-rays are produced. In conventional hot fusion huge quantities radiation are given off by this process. If the Patterson cell worked by this conventional process, everyone near it would have been killed.

Pg_7 UP

[Heirich Hora] During the conference in Orlando, Professor Heirich Hora (left), Emeritus Professor of The University of New South Wales, presented his theory of how the electrostatic barrier was being overcome. Hora said that the repulsive positive charges of the nucleons were "screened" by a negatively charged electron cloud. 2

Dr. Hora's theory can not explain the lack of radiation. In his model the nucleons must still pass over the electrostatic potential barrier. When they do a high energy signatures will be produced.

If the range of the strong nuclear force increased beyond the electrostatic potential barrier a nucleon would feel the nuclear force before it was repelled by the electrostatic force. Under this situation nucleons would pass under the electrostatic barrier without producing any radiation. Could this author's original idea that electron condensations increase the range of the nuclear foces be correct?

Pg_8 UP

Since the Orlando conference several two new things have come to light.

1. It is now known that John J. Ruvalds discovered high temperature thin film nickel hydrogen superconductors.

Light water cold fusion cells (the CETI cell) are thin film nickel hydrogen structures.

Patent nuber 4, 043, 809 states:

" High temperature superconductors and method

ABSTRACT: This invention comprises a superconductive compound having the formula: Ni1-x Mx Zy wherein M is a metal which will destroy the magnetic character of nickel (preferably copper, silver or gold); Z is hydrogen or deuterium, x is 0.1 to 0.9; and y, correspondingly, 0.9 to 0.1, and method of conducting electric current with no resistance at relatively high temperature of T>1 K comprising a conductor consisting essentially of the superconducting compound noted above."

This patent was issued on August 23, 1977 long before cold fusion was discovered. The bulk of the nickel hydrogen material becomes superconductive at cryogenic temperatures, however, this author believes that small isolated areas of superconductivity exist within the material at room temperature.

Pg_9 UP

2. F. Celani, A. Spallone, P. Tripodi, D. Di Gioacchino, S. Pace, INFN Laboratori Nazionali di Frascati, via E.Fermi 40, 00044 Frascati (Italy) discovered superconductivity in palladium deuterium systems.


"............Awire segment (1/4 of total, the most cathodic) showed a very low resistance behavior in some tests (corresponding to R/Ro values much less than 0.05 and in a case less than 0.01).................."

It appears that the palladium deuterium structure is a room temperature superconductor. Heavy water cold fusion cells are constructed of palladium impregnated with deuterium (deuterium is heavy hydrogen).

3. Superconductors have no need to be negative, New Scientist, issue 2498, May 2005
" Now physicist Julian Brown of the University of Oxford is arguing that protons can also form pairs and sneak through the metallic lattice in a similar manner. In theory, the protons should superconduct, he says. "
It's now known that cold fusion cells contain small superconductive regions.3 4 Nuclear reactions proceed in these regions after thermal energy is added to the system. The thermal vibrations invite protons to participate in the condensation. The permeability and the permittivity of condensation now affects the nuclear forces. This author contends that the range of the strong nuclear force extends beyond the range of the electrostatic potential barrier. The increase in range allows nuclear transmutations to take place without radiation.

Pg_10 UP


The Griggs Machine and Potapov's Yusmar device have been claimed to produce anomalous energy. The conditions inside of a cavitational bubble are extreme and can reach 10 of thousands degrees C at pressures of 100 million atmospheres or more.5 These horrific pressures and temperatures are still several orders a magnitude to small to drive a conventional hot fusion reaction.

In January of 1998 P. Mohanty and S.V. Khare, of Maryland College, reported:
Sonoluminesence as a Cooperative Many Body Phenomenon

Physical Review Letters Vol 80 #1 January 1998.

"........The long range phase correlation encompassing a large number of component atoms results in the formation of a macroscopic quantum coherence......"

A superconductor is a macroscopic quantum coherence. This author believes that the condensed plasma within a cavitation bubble is superconductive. Cavitational implosions produce extreme shock . This shock invites the nuclear force to participate in the condensation. The range of the nuclear force is increased. Nuclear transmutations proceed within the condensation.

Pg_11 UP


It was believed, during the first half of the 20th Century, that antigravity would be discovered shortly. This never happened. By the second half of the 20th Century, mainstream scientists believed that the that the unification of gravity and electromagnetism could only be obtained at very high energies. These energies would forever be beyond the reach of man's largest accelerators. Antigravity was relegated to the dreams of cranks.

In 1955 Major Donald E. Keyhole wrote in the "The Flying Saucer Conspiracy" Page 252-254
"Even after Einstein's announcement that electricity, magnetism, and gravity were all manifestations of one force, few people had fully accepted that thought that we might someday neutralize gravity. ... I still had no idea how such a G-field could be created."
In the last decade of the 20th Century, Podkletnov applied mechanical shock to a superconductor. A gravitational anomaly was produced.6 Znidarsic wrote that the vibrational stimulation of a Bose condensate adjoins the gravitational field with the condensate. The gravitational force is then effected by the permittivity and permeability of the condensate. The range of the gravitational interaction decreases by the same order of magnitude that the range of the nuclear force has increased. The strength of the gravitational field within the condensate greatly increases. Gravitomagnetic flux lines are expelled. This takes place at low energies. It has to do with the path of the quantum transition. The relationship will be qualified in later chapters. Hopefully this idea will someday be universally recognized and antigravity will finally become a reality.

Pg_12 UP


On July 12, 1998 the University of Buffalo announced its discovery:



"LAS VEGAS -- Materials engineers at the University at Buffalo have made two discoveries that have enabled carbon-fiber materials to superconduct at room temperature.

The related discoveries were so unexpected that the researchers at first thought that they were mistaken.

Led by Deborah D.L. Chung, Ph.D., UB professor of mechanical and aerospace engineering, the engineers observed negative electrical resistance in carbon-composite materials, and zero resistance when these materials were combined with others that are conventional, positive resistors.....

This finding of negative resistance flies in the face of a fundamental law of physics: Opposites attract.

Chung explained that in conventional systems, the application of voltage causes electrons -- which carry a negative charge -- to move toward the high, or positive end, of the voltage gradient.

But in this case, the electrons move the other way, from the plus end of the voltage gradient to the minus end....................

"In this case, opposites appear not to attract," said Chung. The researchers are studying how this effect could be possible.".........

..............A patent application has been filed on the invention. Previous patents filed by other researchers on negative resistance have been limited to very narrow ranges of the voltage gradient.

In contrast, the UB researchers have exhibited negative resistance that does not vary throughout the entire gamut of the voltage gradient."

Electrical engineers know that when electrons "move toward the high, or positive end, of the voltage gradient" power is produced. Have the University of Buffalo scientists discovered how to produce electricity directly from a zero point process?

Pg_13 UP


The range of the electric and magnetic fields are strongly effected by a superconducting Bose condensate. An element of shock invites nuclear and gravitational participation. The shock produces vibration . The vibration lowers the elasticity of the space within the condensate. The reduced stiffness is expressed in several ways. The range of the natural forces tend towards the length of the superconductor. The strength of the forces varies inversly with their range. The constants of the motion tend toward the electromagnetic. The effect of the vibration is qualified in Chapters 10 and 11.

The development or reduced to practice zero point technologies will be of great economic and social importance.

Pg_14 UP


1. K. Mendelssohn. "THE QUEST FOR ABSOLUTE ZERO" McGraw-Hill, New York, 1966

2.Hora, Kelly Patel, Prelas, Miley, and Tompkims
Physics Letters A, 1993, 138-143 Screening in cold fusion derived from D-D reactions

Dr. George Miley's "Swimming Electron Theory" is based on the idea that electron clusters (a form of condensation) exist between the metallic surfaces of cold fusion electrodes.

3. Cryogenic phenomena are commonly associated with the spin pairing of electrons. The Chubb - Chubb theory points out the fact that electrons pair in the cold fusion process.

4. A. G. Lipson, et al., "Generation of the Products of DD Nuclear Fusion in High-Temperature Superconductors YBa2Cu3O7-x Near the Superconducting Phase Transition," Tech. Phys., 40 (no. 8), 839 (August 1995).

5. "Can Sound Drive Fusion in a Bubble" Robert Pool, Science vol 266, 16 Dec 1994

6. "A Possibility of Gravitational Force Shielding by Bulk YBa2Cu3O7- x Superconductor", E. Podkletnov and R. Nieman Physica C 203 (1992) pp 441-444.

"Tampere University Technology report" MSU-95 chem, January 1995

"Gravitoelectric-Electric Coupling via Superconductivity. " Torr, Douglas G. and Li, Ning Foundations of physics letters. AUG 01 1993 Vol6 # 4, Page 371

7. Companies that are interested in technical information on the invention should contact the UB Office of Technology Transfer at 716-645-3811 or by e-mail at

"Apparent negative electrical resistance in carbon fiber composites", Shoukai Wang, D.D.L. Chung
The Journal "Composites", September 1999

8. "Probing Question: What is a supersolid?", May 13, 2005

// End of chapter 4 .............................................................................