Atkinson Measure of Inequality:

 

Atkinson defines what he calls "the equally distributed equivalent income" of a given distribution of a total income, and this is defined as that level of per capita income which if enjoyed by everybody would make total welfare exactly equal to the total welfare generated by the actual income distribution. Atkinson measure of inequality has the following formula:

                   = 1 -       for   1

= 1 -        for  = 1

 

 

Now, from BBS data collected from Naogaon in 1996, we had the following data-

 

 

Surveyed households

% house hold

Income

,=3

<1000

39

7.815631

56126.36

0.2327325

18.46231013

1000-2000

179

35.871743

290124.32

0.2621113

14.55554174

2001-3000

107

21.442886

281048.35

0.4247682

5.54237693

3001-4000

56

11.222445

225586.54

0.6514482

2.35635256

4001-5000

32

6.412826

162442.64

0.8209274

1.48385157

5001-6000

22

4.408818

115243.11

0.8471240

1.39349689

6001-7000

11

2.204409

64389.11

0.9466173

1.11596637

7001-8000

15

3.006012

136743.99

1.4742519

0.46010463

8000+

38

7.615230

784834.07

3.3400192

0.08964005

Total

499

100  %

2116538

 

45.45964

 

 

       = 1 -          for  = 3

            = 1 - 0.444947

            = 0.555053

 

See the S-plus / R codes used to calculate this result of the Atkinson's measure.

 

Similarly,           = 0.3287440          for  = 1.25

                         = 0.3754383          for  = 1.50

                         = 0.4164656          for  = 1.75

                         = 0.4523522          for  = 2.00

                         = 0.4836391          for  = 2.25

                         = 0.5108557          for  = 2.50

                         = 0.5345050          for  = 2.75

As the value of the parameter increases, the Atkinson measure of inequality becomes more and more sensitive to the relative position of the poorer person. From the results, we see that for parameter value of greater magnitude, Atkinson measure becomes higher and higher indicating relative position of the poorer person more unequal.

 

Now, from BBS data collected from Naogaon in 1996, we had the following data-

 

 

Surveyed households

% house hold

Expenditure

,=3

<1000

39

7.815631

21266.13

0.09065847

121.6699257

1000-2000

179

35.871743

254711.65

0.23658124

17.8664966

2001-3000

107

21.442886

281124.15

0.43681636

5.2408557

3001-4000

56

11.222445

188828.04

0.56061276

3.1818085

4001-5000

32

6.412826

137942.38

0.71669151

1.9468634

5001-6000

22

4.408818

135931.97

1.02726727

0.9476176

6001-7000

11

2.204409

98167.24

1.48374209

0.4542377

7001-8000

15

3.006012

125930.71

1.39580553

0.5132751

8000+

38

7.615230

697523.22

3.05182477

0.1073695

Total

499

100  %

1941425

 

151.9284

 

       = 1 -           for  = 3

            = 1 - 0.2433895

            = 0.7566105

 

Similarly,           = 0.4181511          for  = 1.25

                         = 0.4924929          for  = 1.50

                         = 0.5587816          for  = 1.75

                         = 0.6156667          for  = 2.00

                         = 0.6629220          for  = 2.25

                         = 0.7012866          for  = 2.50

                         = 0.7320429          for  = 2.75

 

Back to Inequality Page

This web-site is maintained by -

Mohammad Ehsanul Karim <wildscop@yahoo.com>

Institute of Statistical Research and Training

University of Dhaka, Dhaka -1000, Bangladesh

 

Back to Index page

 

Go Back to

Ehsan's Statistical pages

for more Statistical pages(Selection of the Best Regression Equation, MEASURING INEQUALITY IN NAOGAON, Non-Linear Models, Anthropology, Fitting Orthogonal Polynomial, Simple Linear Regression with assumptions using SPSS, SAS, MATLAB, Minitab, S-plus, R,  STATA, Bias - Direction and Classification in Epidemiologic Studies, Correlogram, Methods of collecting the information, Nominal Associations, Programs Written in ForTran, Intelligence: Theories and Tests, Basics of Demography in context of Bangladesh, survey Data analysis using SUDAAN, WesVar, Epi Info, CENVAR, Statistical software packages in Statistical Data Analysis)