Site hosted by Angelfire.com: Build your free website today!

Lab 03

 

Problem Statement:  Using the Lab03 matlab script as a starting point, fill in the required code to solve the simply supported beam with

a uniform distributed load of w(x) = 100 lb/ft in the downward direction.  Use the two variable formulation to obtain nodal values of moment

and deflection and then post-process to obtain the nodal values of shear and slope from their definitions.  Perform a uniform mesh refinement

study for the linear basis only in Enorm of convergence study, identify the mesh for your most accurate solution and present a

shear/moment/slope/deflection graph for this mesh.

 

Analysis:  The recipe was applied to the differential equations for Moment ( L(M) = -d2M(x)/dx2+ w(x) = 0 ) and also for Deflection

(  L(y) = -EI(x)d2y(x)/dx2 + M(x) = 0 ).  The Moment is solved for first and then used to find the deflection.

For the Moment Analysis ------  {DIFFM}*{M} = -{LOAD} + {BSHR}

For the Deflection Analysis ------  {DIFFY}*{Y} = {MOM} + {BSHR}

After the values of Moment and Deflection are found we can use these values to post-process and find the shear and slope.  Applying the

recipe to the Shear differential equation (  L(V) = V(x) – dM(x)/dx = 0 )  and the Slope differential equation (  L(Q) = Q(x) – dy(x)/dx = 0 )

For the Shear Analysis ------ {MASS}*{V}={DMOM}

For the Slope Analysis ------ {MASS}*{Q}={DDEF}

This data was entered into matlab code along with the modification to the dirichlet data.  MatLab Code for Lab-03

 

Results:

 

Table 1. Bending Moment Convergence Table in Euler Bernoulli Beam

# Elements

Mleft

Mcenter

Mright

Enorm

DEnorm

eh/n

Slope

3

0

1111.1

0

370370.37

-------

-------

-------

6

0

1250

0

405092.59

34722.2222

11574.0741

-------

12

0

1250

0

413773.15

8680.5556

2893.5185

2.00000000000

24

0

1250

0

415943.29

2170.1389

723.3796

2.00000000000

48

0

1250

0

416485.82

542.5347

180.8449

2.00000000002

96

0

1250

0

416621.46

135.6337

45.2112

2.00000000013

192

0

1250

0

416655.36

33.9084

11.3028

2.00000000104

384

0

1250

0

416663.84

8.4771

2.8257

2.00000001749

768

0

1250

0

416665.96

2.1193

0.7064

2.00000125411

1536

0

1250

0

416666.49

0.5298

0.1766

2.00000381556

3072

0

1250

0

416666.62

0.1324

0.0441

2.00025027684

 

 

 

Table 2. Deflection Convergence Table in Euler Bernoulli Beam

# Elements

Yleft

Ycenter

Yright

Enorm

DEnorm

eh/n

Slope

3

0

0.000140018

0

0.4321554

-------

-------

-------

6

0

0.000173273

0

0.5354675

0.10331213854

0.034437379

-------

12

0

0.000176226

0

0.5640445

0.02857701112

0.00952567037

1.854082835

24

0

0.000176965

0

0.5713679

0.00732340806

0.00244113602

1.964267941

48

0

0.000177149

0

0.5732101

0.00184216397

0.00061405466

1.991113701

96

0

0.000177195

0

0.5736713

0.00046124978

0.00015374993

1.997781343

192

0

0.000177207

0

0.5737867

0.00011535677

0.00003845226

1.999445519

384

0

0.000177210

0

0.5738155

0.00002884196

0.00000961399

1.99986142

768

0

0.000177210

0

0.5738227

0.00000721066

0.00000240355

1.99996598

1536

0

0.000177211

0

0.5738245

0.00000180267

0.00000060089

1.999993641

3072

0

0.000177211

0

0.5738250

0.00000045060

0.00000015020

2.000220219

 

 

 

Table 3. Post Processing Values for Shear and Slope

# Elements

Vleft

Vcenter

Vright

Qleft

Qcenter

Qright

 

3

400.000

0

-400.000

0.0000504

0

-0.0000504

 

6

451.923

0

-451.923

0.0000551

0

-0.0000551

 

12

475.944

0

-475.944

0.0000563

0

-0.0000563

 

24

487.972

0

-487.972

0.0000566

0

-0.0000566

 

48

493.986

0

-493.986

0.0000567

0

-0.0000567

 

96

496.993

0

-496.993

0.0000567

0

-0.0000567

 

192

498.496

0

-498.496

0.0000567

0

-0.0000567

 

384

499.248

0

-499.248

0.0000567

0

-0.0000567

 

768

499.624

0

-499.624

0.0000567

0

-0.0000567

 

1536

499.812

0

-499.812

0.0000567

0

-0.0000567

 

3072

499.906

0

-499.906

0.0000567

0

-0.0000567

 

 

 

 

 

 

 

 

 

 

 

Conclusion:  For a simply supported beam with a distributed load all the way across the beam (which is what we have) the equation for the Max moment is

Mmax = wx/2(l-x).  The length of our beam is 10 foot and the distributed weight is 100 lbs/ft.  So if you solve this equation you get the following

Mmax = [(100)(5)/2](10-5) = 1250lb*ft. Also for the slope the equation is:  Ymax = (wx/24EI)*(2lx2-x3-l3) If you plug in the appropriate numbers

you get –1.772E-4 in.  These values are almost exactly the same as what we got with our FEA Results for Moment/Deflection/Shear/Slope.

From the Convergence Graph of Moment and Deflection you can see that the mesh was in the adequate mesh zone since the slope of the lines stay at 2.  I couldn’t

refine the mesh enough to get round off error, my computer would crap out before I could there.