Site hosted by Angelfire.com: Build your free website today!

Lab #2 Steady-State One-Dimensional Conduction

With no Source and Boundary Convection

 

Problem Statement:  Using the Lab02 Matlab Script File for steady-state one-dimensional conduction with no source and boundary convection, perform a mesh convergence study for linear, quadratic, and cubic element bases.  Starting with a two element discretization, uniformly refine the mesh 6 times. Verify the asymptotic error estimate using the energy semi-norm and in TL, presenting appropriate tables and graphs.

 

Analysis:

 

The following tables were filled out using the equations below:

Note:  The user inputs the number of nodes over the domain and Matlab provides the Enorm values and Q at the left most node.

 

Equations Used to Fill out Charts

 

 

Convergence Tables (Linear, Quadratic, Cubic)

Linear Table

Meshelements

le

QL

DQL

eh/N

SlopeQ

Enorm

DEnorm

eh/NEnorm

SlopeEnorm

2

0.5

996.8656

---

---

---

13409102.75

---

---

---

4

0.25

999.191

2.3254

0.7751

---

13451119.25

42016.51

14005.5008

---

8

0.125

999.796

0.605

0.2017

1.942

13462049.76

10930.51

3643.5027

1.943

16

0.0625

999.9489

0.1529

0.0513

1.978

13464812.3

2762.54

920.8471

1.984

32

0.0313

999.9872

0.0383

0.0128

1.997

13465504.87

692.56

230.856

1.996

64

0.0156

999.9968

0.0096

0.0032

1.997

13465678.13

173.27

57.7546

1.999

128

0.0078

999.9992

0.0024

0.0008

2

13465721.46

43.32

14.4412

2

 

 

 

Quadratic Table

Meshelements

le

QL

DQL

eh/N

SlopeQ

Enorm

DEnorm

eh/NEnorm

SlopeEnorm

2

0.5

 999.9704

---

---

---

13465201.74

---

---

---

4

0.25

999.998

2.76E-02

1.18E-03

---

13465698.89

497.1535

165.7178

---

8

0.125

999.9999

1.87E-03

1.25E-04

3.2495

13465733.52

34.6273

11.5424

3.8437

16

0.0625

1000

1.24E-04

8.24E-06

3.9174

13465735.75

2.2323

0.7441

3.955

32

0.0313

1000

7.78E-06

5.19E-07

3.989

13465735.89

0.1406

0.0469

3.988

64

0.0156

1000

4.87E-07

3.25E-08

3.9976

13465735.9

0.0088

0.0029

3.9973

128

0.0078

1000

-2.95E-08

1.87E-09

4.0441

13465735.9

0.0006

0.0001

4.009

 

 

 

Cubic Table

Meshelements

le

QL

DQL

eh/N

SlopeQ

Enorm

DEnorm

eh/NEnorm

SlopeEnorm

2

0.5

999.9997

---

---

---

13465730.72

---

---

---

4

0.25

1000

2.82E-04

4.47E-06

---

13465735.81

5.0867

1.6956

---

8

0.125

1000

3.58E-06

5.68E-08

6.3

13465735.91

0.1044

0.0348

5.606

16

0.0625

1000

-3.79E-06

6.01E-08

-0.082

13465735.94

0.0277

0.0092

1.915

32

0.0313

1000

-1.48E-05

2.35E-07

-1.965

13465736.04

0.1042

0.0347

-1.913

64

0.0156

1000

-5.92E-05

9.39E-07

-2.001

13465736.46

0.4168

0.1389

-2

128

0.0078

1000

-2.37E-04

3.75E-06

-1.999

13465738.13

1.6671

0.5557

-2

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion:

 

From the Convergence Curve Graphs below you can see that the linear and quadratic meshes are within the adequate mesh zone.  The slope of the convergence curves for these two trials is close to 2 and 4 respectively.  Increasing refinement helped the accuracy for the linear and quadratic trials, however the cubic behaved a little bit different.  As you increased the refinement on the mesh for the cubic the slope became negative and the curves became non-linear.  This phenomenon is called “round off error”.

 

Figure 1: Convergence Curves for TL

Figure 2: Convergence Curves for Enorm