Problem
Statement:
Solution:
Applying the GalerkinWeak Statement
Recipe yields the following:
Se( [DIFF]e
{Q}e = {SRC}e + {BFLX}e)
Writing this in MatLab terms yields the following:
GWSh = [LHS] {Q}
= [RHS] where [LHS] = [DIFF] and [RHS] = SRC]+ [BFLX]
|
|
0.4005 |
-0.4005 |
0 |
0 |
0 |
|
Q1 |
|
8.0599 |
|
|
-0.4005 |
0.802 |
-0.4015 |
0 |
0 |
|
Q2 |
|
5.7292 |
|
GWSh = |
0 |
-0.4015 |
0.804 |
-0.4025 |
0 |
|
Q3 |
= |
4.5573 |
|
|
0 |
0 |
-0.4025 |
0.806 |
-0.4035 |
|
Q4 |
|
2.6042 |
|
|
0 |
0 |
0 |
-0.4035 |
0.4035 |
|
Q5 |
|
0.4557 |
Results:
A Convergence Table for the leftmost temperature is shown
below (Table 1), indicating the number of elements used in each approximation
and its corresponding element length, temperature, convergence, normal error,
and change in normal error.
|
Table 1:
Lab 1 Convergence Table |
|||||
|
N |
Ωe |
TL |
ΔTL |
Enorm |
ΔEnorm |
|
4 |
0.25 |
161.9714 |
--- |
1279.90 |
--- |
|
8 |
0.125 |
162.9352 |
0.9638 |
1303.73 |
23.82678 |
|
16 |
0.0625 |
163.1762 |
0.241 |
1309.75 |
6.023159 |
|
32 |
0.03125 |
163.2364 |
0.0602 |
1311.26 |
1.509967 |
|
64 |
0.015625 |
163.2515 |
0.0151 |
1311.64 |
0.377753 |
|
128 |
0.0078125 |
163.2552 |
0.0037 |
1311.74 |
0.094455 |