Physics from UFO Data
Massimo Teodorani, Ph.D
Via
Catalani 45 – 47023 Cesena (FO) – ITALY
E-Mail: mlteodorani@alice.it
Abstract
A research project
on the UFO phenomenon is proposed in which UFO targets are treated on a par
with astronomical objects having no fixed coordinates. Specifically oriented
monitoring techniques and strategies involving small telescopes which are
connected to CCD detectors, spectrographs and photon-counting photometers are
presented. Expected exposure-times for acquiring a good S/N ratio of the target
using all the proposed instruments is also evaluated. Finally, physical
information which is expected to come out from data analysis are presented and
discussed in detail.
|
|
1.
Introduction
Previous instrumental
projects on the UFO phenomenon, as "Project Hessdalen" (12) and
"Project Identification" (ref. 11) and their results, demonstrate
that it is possible to attach this problem with the same galilean rigour and
method by means of which more canonical physical problems are treated. The
instrumental monitoring program proposed in this work (ref. 14, 15, 16, 17) is
intended to be a scientific support to the previously applied projects and an
occasion of discussion for future improvements of UFO research. Such a program
involves the use of instrumentation which is commonly used in the astrophysical
research in order to collect, detect and analyze photons which are emitted by
celestial objects. As UFO targets have typically no fixed coordinates and are often
subject to random or unpredictable motion, it is necessary to guide the whole
measurement platform by means of a proper device. For this reason it is
proposed to subdue astronomy-like instrumentation to tracking devices of
military type, such as a radar and/or a laser telemeter (ref. 18). Using such a
strategy it is possible to obtain very accurate data, which, once analyzed, can
furnish fundamental informations on the physical mechanism which governs the
UFO behaviour. If such a procedure can be applied, the whole UFO phenomenology,
so far strictly circumscribed to the evaluation of simple witnesses (ref. 13),
could be treated with the same physical methodology with which an astronomer
studies celestial objects. In general, it is very difficult to predict where
and when the UFO phenomenon is going to occur. Nevertheless, the existence of
some regions of the world in which the phenomenon appears to be temporally and
spatially recurrent (refs. 11, 12 and Appendix) offers the most favourable
conditions in order to apply monitoring techniques.
|
|
2.
Instrumentation and observational strategies
Proposed idea
consists in using astronomical light detectors and analyzers which are
connected to easily transportable small large-view-field telescopes, in order
to acquire images and spectra of UFO targets (ref. 14, 15, 16, 17). The system
Telescope-Detector-Analyzer (TDA) is intended to be the main optronic unit
which must be used for the data acquisition. In order that the TDA system can
be easily guided toward a given target, it is essential to subdue it to the
following instrumental facilities:
The most basic TDA
system is intended to work in the widest optical window, ranging from 3500 Å to
11600 Å. The signal data which are acquired by the telescope are recorded on
CCD detectors which are used both for direct imaging and for spectroscopy
(refs. 2, 5, 7). A Photon-Counting Photometer (PCP) is a supplementary facility
(refs. 3, 5, 9). The whole TDA system is composed of a complex of 20 small
telescopes to which photometric and spectroscopic devices are attached. All the
20 TDA sub-systems are intended to be used simultaneously. The whole apparatus
is characterized by 4 main units:
Unit PHOTOM-A
This unit is composed of 5 telescopes, everyone of which is connected to a CCD
camera operating in a specific wavelength window. Every window is obtained by
using the following filters of astronomical type: U (3000-4000 Å), B (3700-5500
Å), V (4900-6700 Å), R (5400-9400 Å) and I (7000-11600 Å). In this case one is
going to perform CCD Direct Imaging (CCDDI), in order to carry out
simoultaneously both photography and photometry of an extended light source.
Unit PHOTOM-B
This unit is composed of 5 telescopes, everyone of which is connected with a
Photon-Counting Photometer operating in a specific wavelength window. Every
window is obtained by using the same filters used in Unit Photom-A: U, B, V, R,
I. In this case one is going to perform Photon-Counting Photometry (PCP), in
order to search for fast light fluctuations, flickerings or pulsations.
Unit SPEC-A
This unit is composed of 5 telescopes, everyone of which is connected with an
Objective-Prism, whose dispersing element is set up at a particular inclination
in order to gain the requested wavelength window. The wavelength windows are
3000-4700 Å, 4700-6400 Å, 6400-8100 Å, 8100-9800 Å, 9800-11500 Å. The dispersed
light is recorded on CCD cameras. In this case one is going to perform CCD
Objective-Prism Spectroscopy (CCDOPS), in order to obtain large-view-field
low-dispersion spectra. Indicative value of obtained dispersion is 300-100
Å/mm.
Unit SPEC-B
This unit is composed of 5 telescopes, everyone of which is connected to a
Grating-Slit Spectrograph whose grating or grism (ref. 5) is set up at a
particular inclination in order to gain the requested wavelength window. The
wavelength windows are centered in the same range as in Unit Spec-A, but are
restricted to a narrower value (300-100 Å). The dispersed light is recorded on
CCD cameras. In this case one is going to perform CCD Grating-Slit Spectroscopy
(CCDGSS), in order to obtain medium-high dispersion spectra. Indicative value
of obtained dispersion is 1-30 Å/mm.
The shutter of the
TDA system, which must be necessarily connected with a computer controlled
exposimeter, is intended to work automatically whenever an unidentified flying
target is tracked. Repeated frames, both images and spectra, should be taken in
fast time-sequence, according to the apparent luminosity of the target. The
telescope T is thought to be used to point to far targets. In the cases in
which the target is very near, the telescope is intended to be replaced by a
Wide Angle Lens (WAL) by means of a rotating cylinder to which both T and WAL
are binded; WAL is then connected to detectors and to spectrographs as well.
The movement of the 4 described units is syncronized with the movement of the
R-IRST-L pointing devices, all working on an altazimuth mounting. Pointing and
tracking devices can be obtained from military-like technology, which is at
present very well experimented (ref. 18).
In the following
section specific instruments, together with observational strategies which are
planned to be used, are described in detail.
The Telescope
The use of the telescope depends strictly on the available radar range, which
typically, at least for ground-based portable radars, can't exceed 30-40 Km. At
this distance an extended radiating object having typical dimensions of 10-50 m
is fully in the range of a telescope with an aperture D ~ 20 cm. In such a
configuration good light gathering power and spatial resolution could be
achieved. The weight of the telescope should be low enough in order that the
whole complex of 20 telescopes plus detection-devices can be easily moved and
matched, without appreciable effects of mechanical inertia, with the R-IRST-L
tracking system. In order to increase the probability that the target's
coordinates which are calculated by the radar's computer are fitted suitably
with a centered position of the target in the telescope's view-field, the
telescope should be of Schmidt-type (ref. 5) with a view-field of at least 4° x
4° (typically), namely able to restrict the possible target's random motions,
which can be due both to guiding inaccuracy and to possible intrinsic fast
shifting of the target, inside an acceptable error box.
The Wide Angle Lens
Close UFO targets, if moving, are necessarily characterized by a strong angular
velocity and very high luminosity. For this reason the telescope must be
replaced by a Wide Angle Lens (WAL) having an opening angle which should be
varied from 10° to 90° by means of a dedicated zoom system. The WAL lens must
also prevent every possible risk of over-exposure of the detectors in the cases
in which a very close target with very high apparent luminosity is pointed.
The CCD Detector
To each of
15 of the 20 telescopes, a CCD detector is attached in order to fulfil both
imaging and spectroscopy. The use of very high capability of a CCD as a light
detector and recorder (refs. 2, 7) is justified for an UFO observing program
for the following fundamental reasons:
These reliable CCD
performances are well applied both to direct imaging and to spectroscopy. When
CCD imaging is carried out, it is possible to obtain an electronic photograph
of the target, from which one is allowed to do accurate measurements of
morphologic surface features and of light distribution along chosen axes of the
target itself and of its surrounding presumably ionized gaseous medium. When a
CCD camera detects dispersed light, using a prism, a grating or a grism, it is
possible to obtain an electronic spectrum, by means of which one is allowed to
carry out measurements on the continuum spectrum and, in case, to search and
identify emission lines or bands. Lines or bands, which may display a
particular intensity, equivalent width, base-width and doppler displacement,
are the result of atomic transitions which are triggered by particular
temperature regimes of a presumably heated target and can be produced by
specific chemical elements (refs. 1, 6, 10).
The Photon-Counting Photometer
This light
detector owns the precious performance of being highly linear if compared with
conventional photographic plates or films. Above all, this is the device which
secures the highest time resolution. In such a case one is allowed to detect
possible fast target light variations of the order of 10-6 - 10
seconds. Nevertheless, such a detector, differently from a CCD camera, is not
able to collect spatially resolved photons (refs. 4, 5, 9). Such a limitation
can be overcome if one decides to use the very recent ICCD (Intensified CCD) or
EBCCD (Electron Bombarded CCD) detectors, which have performances of both a
normal CCD camera and a high-speed photon-counting photometer. Anyway these new
devices are not yet fully experimented and at present their spatial resolution
is still limited to small pixel matrixes (ref. A).
The Objective-Prism Spectrograph
By means of
an objective prism it is not possible to achieve spectral dispersions better
than dl/dx = 300-100 Å/mm (refs. 4, 5). Therefore, in such a case, it is
possible to carry out only low-dispersion spectroscopy. An approximately
comparable result can be obtained by applying an elementary grating, which is
characterized by few lines per millimeter, to the lens of a conventional
camera: a similar attempt has been done during previous UFO monitoring programs
(ref. 12). In general and in the present case, objective-prism spectroscopy can
be fulfilled by trying to track one or more targets together, inside the
view-field of a Schmidt-type telescope (refs. 4, 5), in order to obtain spectra
which are just displayed on the whole frame. This is a sort of photograph
containing dispersed lights instead of simple lights. The objective-prism
device should be used in the following cases:
The Slit-Grating Spectrograph
By means of a slit-grating spectrograph (refs. 1, 4, 5) it is possible to
obtain medium-high dispersion spectroscopy. This light-analysis technique can
be achieved only when there is sufficient time to place the target in the
dispersion slit of the spectrograph. The most favourable circumstance for this
occurs when/if the target is standing still. Moreover, in order to obtain an
optimum S/N ratio and the shortest as possible exposure-time, the target must
be sufficiently bright. The slit-grating spectrograph should be indeed used in
the following cases:
The financial cost
of a complete TDA apparatus, of the approximate order of 1-2 billions of
dollars, is well in the economic possibilities of most technologically advanced
governments. For this reason a TDA-type platform, which should be put at
disposal of every one of these nations, should be implemented in all the areas
of the world in which the UFO phenomenon appears to be recurrent.
|
|
3.
Calculated exposure-times for measurements
It is possible to
predict the order of magnitude of the Exposure-Time ET in the case one is going
to acquire CCD imaging frames and CCD spectroscopic frames of an UFO target. In
order to reach this task, it is necessary to define what kind of object one
expects to observe. Taking into account all the witnesses and photographs of
UFOs (ref. 13), it can be reasonable to assume that the "average
appearance" of an UFO target is just the one of an extended object more or
less uniformly illuminated. In such a case, taking into account all the
characteristics of the chosen monitor instrumentation and the physics on which
photon detection is based (ref. 5), it is possible to derive the following
formula which can furnish a preliminary evaluation of the time exposure ET
which is necessary in order to obtain a good S/N ratio:
(1)
To give an idea of
this procedure the following parameters could be arbitrarily fixed:
It is assumed that
the wavelength interval dl is the only variable parameter. The choice of this sole variable
is due to the fact that one wants to check how different are the exposure-times
according to the kind of observational technique, which one wants to carry out.
This is synthesized in the following list of options:
Results of such
calculations are presented in the graphs shown in Figures 1, 2, 3 and 4. Every
graph furnishes 6 different values of ET for different values of the parameter dl. The four graphs are
specified for a given value of parameter L, which in this case is ranging from
1 Kw to 1 Mw. If one wants to perform photon-counting photometry, instead of
CCD photometry one has to assume dl = 500 Å (as in the case of CCD) and e = 0.05 (instead of 0.25):
in such a case it is possible to obtain an exposure time which is longer of a
factor of 5 than in the case of CCD photometry. In the case one wants to
decrease or increase of a factor 10 - for instance - the diameter D of the UFO
target, it is easy to see from the formula above that in such a case ET
increases or decreases of a factor 102.
Figure 1. Exposure times for a UFO target with luminosity L =
1 Kw, given dl = 0.005 Å (ta), dl = 0.05 Å (tb), dl = 0.5 Å (tc), dl = 5 Å (td), dl = 50 Å (te), dl = 500 Å (tf). Target diameter is assumed to be D = 10 m. Distance d
is varied from 100 m to 10 Km. Graph is in bi-logarithmic form. |
In conclusion,
looking at the result of these calculations it is very easy to notice that it
is much more problematic to carry out spectroscopic measurements than
photometric ones, because of the much higher requested exposure-times.
|
|
4. Physics
from data analysis and research strategies
Output processed
data are expected to furnish the following measurable parameters:
The derivation of
physical quantities by means of multi-wavelength and multi-mode instrumentation
requests for specific choices of physical parameters and aimed strategies for
obtaining them. Proposed choices and strategies are described in the present
section.
A. Geometric and Kinematic Parameters
(2)
Angular height is an altazimuthal quantity which can
be inferred from the target position, being target position obtained from the
radar facility.
·
Linear Size S
The linear size S can be calculated by relating the angular size a, which is determined
straight by taking measurements on a given CCD frame, to the target distance d,
as:
(3)
·
Linear Separation Z
The linear separation Z of two close targets can be calculated by relating the
angular separation q, which analogously to a is determined straight by obtaining measurements from a given CCD
frame, to the target distance d. Z is given by:
(4)
In general, the possibility to obtain the quantities
S and Z is strictly dependent on the resolution capability of the CCD camera
(refs. 2, 4, 7). For this reason it is important that the CCD sensor can be
built up with a pixel matrix and a single pixel dimension which are
respectively as large and as small as possible.
·
Transfer Velocity V
The transfer velocity V of the target can be calculated by determining by means
of radar the time t taken by the target to reach two contiguous points and then
relating t with the respective measured distance d.
B. Photometric Parameters
A measurable CCD
image of a target of UFO type can be intended to be an extended source (here
approximated to a sphere) subtending a solid angle W and having a superficial
intensity B at a given frequency interval Dn. Therefore, superficial flux F in the same
interval is given by:
(5)
where, being w the infinitesimal element
of solid angle W, the integral is extended to all the apparent surface of the source.
This is a measurement of the apparent luminosity of the target (ref. 6) which
one is able to achieve after processing a given CCD photometric frame.
·
Intrinsic Luminosity LDn
Relating the superficial flux FDn, measured by means of CCD
photometry, with the distance d, obtained by means of radar and/or laser
telemetric facilities, one is then able to calculate the intrinsic luminosity LDn of the target, as:
(6)
·
Color Index dL
The color index is defined in this case as dl = LDn1/LDn2, where LDn1 and LDn2 are two intrinsic
luminosity values which are obtained in two different frequency intervals. By
using the available U, B, V, R, I filters (ref. 6), it is finally possible to
obtain the intrinsic luminosities L(U), L(B), L(V), L(R), L(I) and then
determine the color indexes L(U)/L(B), L(B)/L(V), L(V)/L(R), L(R)/L(I). This
measurement is very similar to the one which is normally obtained from
classical astronomical observations aimed to the construction of
Herzprung-Russel diagrams (ref. 6).
·
Intrinsic Superficial Intensity IDn
Intrinsic superficial intensity IDn is related to the
superficial intensity BDn using the relation:
(7)
In particular, IDn is considered to acquire
the same value in concentric isophotal contours by which the whole surface of
the luminous target is subdivided. In order to obtain IDn one is obliged to do
"differential photometry" of an extended target having a linear size
S. Such measurement consists in calculating, at a fixed frequency range Dn, the intensity gradient dIDn/dr, where r is defined in
the range 0 £ r £ S/2. This one is strongly considered a fundamental task as one may
well expect that the intrinsic superficial intensity of an UFO target is not
uniform all over the emitting area (ref. 18). Measurement of the intensity
gradient requests for two variants, namely dIDn/dr and ddI/dr, where dI is a color index which is
expressed as the ratio of the intrinsic superficial intensities in two
different wavelength ranges. Isophotal contour measurements are commonly in use
in astrophysical research regarding extended celestial objects such as
galaxies, nebulae or planets (ref. 6).
·
Total Luminosity LT
If one wants to evaluate the total luminosity LT of a given UFO
target, it is necessary to integrate intrinsic luminosity values over the
overall observational band, which can range from n1 = 3500 Å to n2 = 11600 Å in the optical,
but which can be also extended in case in the near UV and in the near IR. In
such a case one obtains:
(8)
where, in particular, s is the Stefan-Boltzmann
constant, and TE is the effective temperature of the target (ref.
6). It is very easy to notice from the formula above that, after obtaining
measurements of LT and S following the procedures described in the
previous sections, it is then possible to deduce the effective temperature of
the UFO target. Temperature measurement is allowed only if one is able to
ascertain, by means of spectroscopic measurements of the continuum spectrum and
by doing suitable comparisons with Planck theory (ref. 6), that the UFO target
is emitting as a thermal spectrum. The measurement of total luminosity (or
bolometric luminosity) LT is normally expected to be done, when
possible, in the case of celestial objects of every type, when multi-wavelength
observations are available (ref. 6).
·
Period of Pulsation Pp
If one is able to obtain a large number of CCD frames (for instance, 100-200
frames) of a given target during one single observational run, it is then
possible to measure, at a fixed frequency range Dn , the period of pulsation Pp
(if present). Pp (ref. 9) involves the pulsational time variation of
the intrinsic luminosity LDn , of the intrinsic intensity IDn and of the color index dL. As one may well expect
that a possible pulsation could range from 0.001 seconds to some minutes, it is
realistic to assert that a CCD camera is not the most suitable photometric
device which can be able to detect fast periodic pulsations, just because of
the long read-out times (about 20 seconds) of this device. Therefore, in order
to perform efficiently this research of "target pulsation" one should
couple to the CCD observing mode an additional and intensive use of
photon-counting fast photometry. Search and consequent measurements of
pulsation effects are strongly encouraged, as previous observations of
pulsating UFO targets have been already done in the past, such as in the case
of the measurements attempted by Project Hessdalen in 1984 (ref. 12).
·
Angle of Gravitational Deflection GD
In this case one is led to hypothesize that the UFO target itself is able to
generate an Einstein-Schwarzschild autonomous gravitational field, which could
be supposedly generated by a natural or artificial mini-black hole or by a
locally warped space-time (refs. 6, 8). According to the general relativity
theory, the light path of a luminous source which passes close to such a strong
field is necessarily deflected by an angle GD. For the present scope of the
proposed monitoring project, angle GD could be measured in 2 ways:
a.
In
the case of night-time observations, a CCD image of an UFO target is expected
to contain a certain number of field-stars. For this reason it should be
necessary to compare the CCD frame in which the UFO is present with a CCD frame
of the same portion of sky containing only stars. One should expect that the
path of the photons of the stars which are closer to the UFO are deflected by
an angle GD from their real path because of a gravitational lensing effect and
that, if the gravitational focus comes close to the TDA apparatus, the received
light of the "perturbed stars" may be highly strengthened. Comparing
the two CCD frames (the target frame and the control frame) it should be
possible to verify that the star positions can be changed from real positions
and that starlight may look to be amplified.
b.
An
alternative experiment for measuring the angle GD could be carried out by
pointing the beam of the laser device to varying distances (perpendicular to
the line of sight) from the target and by taking simultaneously fast sequential
CCD photograms of the field of sky which contains both the target and the laser
beam. If the laser beam appears to be deflected, one can easily measure the
angle GD by doing subsequent reduction of the CCD frames and determine how much
this angle increases when the distance of the laser beam from the UFO
increases.
Gravitational lensing effect is not only a
theoretical exercise, but it has been observationally proved on much
larger-scale phenomena. The case of extragalactic massive objects deflecting
the light of field galaxies is illuminating.
Conversely, if one hypothesizes that the given
target is able to generate an anti-gravitational field, it is possible to
expect that the angle GD could be deflected in the opposite sense. Similar
measurements as the ones described above could be consequently carried out.
·
Gravitational Redshift GR
In addition to gravitational deflection, the photons emitted by a light source
which is very near to an Einstein-Schwarzschild gravitational field - just the
photons emitted by the excited-ionized and brightening atmospheric gas which
surrounds supposedly the luminous target - which is supposedly generated by an
UFO target, are expected to be subject to a gravitational redshift GR (refs. 6,
8). In order to measure GR, one must know the contribution of GR to the color
index of the target. Conversely, hypothesizing that the target is able to
develop an anti-gravitational field, it is expected that one could record an
anti-gravitational blueshift .
C. Spectroscopic Parameters
On the basis of the
physical configuration of a possible UFO target, one should expect to detect
different types of spectral features. The target itself or its surrounding
medium or both must present proper excitation and/or ionization conditions.
This implies the existence of the following possible scenarios:
I.
In
the case the UFO target itself is a machine whose external surface is heated by
some propulsion mechanism, one may assume that such a target is able to produce
molecular emission bands of various strengths, which are possibly resulting
from atomic transitions in metallic elements. Such emission bands are expected
to be mixed with oxygen and nitrogen emission lines produced by the
excitation-ionization processes to which the surrounding atmospheric medium is
subject because of the very hot central target. The strength of both the
emission bands and of the atmospheric emission lines should depend on the
involved temperature of the heated source and on the density of both the heated
source and its surrounding gaseous medium. At low altitudes, where airmass is
thicker one should expect to record stronger atmospheric emission lines.
II.
In
the case the UFO target doesn't appear to be a hot machine (no metallic lines)
but its surrounding medium is hot, one should expect to record only atmospheric
emission lines. Maybe one of the causes of such a situation could be due to a
pulsed magnetic field whose pressure acts, at every given instant and at every
given point, as a magnetically-induced thermal shock on the atmospheric medium.
If this is the case one could also expect that microwaves are emitted; in such
a case microwave radiation could be detected with an appropriate additional
device.
III.
In
the case the UFO target is itself a hot plasma, it is expected that one records
emission lines resulting from atmospheric gas ionization and excitation.
·
Thermodynamic Parameters
From the measurement of the equivalent width and of the full width at half
maximum of every emission line or band, one is then able to derive the main
thermodynamic parameters - the temperature T, the pressure P and the density r (refs. 1, 6, 10) - of the
target and, in most cases, of the excited-ionized atmospheric gas. In the case
the spectrum of the luminous target doesn't present emission lines, one can
measure the target temperature directly from the continuum spectrum. As it is
expected that a thermal continuum spectrum reproduces more or less strictly a
Planck curve (ref. 6), it is necessary to determine the precise wavelength lmax at which the intensity of
the continuum spectrum reaches the highest value. Using this procedure
temperature T can be derived from the Wien displacement law:
(9)
In such a case the acquisition of a low-dispersion
spectrum can be considered sufficient for a preliminary measurement of T.
·
Transfer Velocity Vrad
If the target is moving very fastly, the center of the emission bands can be
displaced by a quantity given by the doppler shift:
(10)
where c is the velocity of light, lufo is the observed blue or
red-shifted wavelength of the center of the emission band produced by the
target, llab
is the wavelength of a laboratory band at rest and Vrad is the
radial velocity of the target (refs. 1, 6). This method for determining the
transfer velocity is intended to be strictly coupled with the radar method.
Because of the very high-precision requested, such a measurement can be secured
only with medium or high-dispersion spectrography. On the contrary, the
emission lines which are due to heated atmospheric gas are not expected to show
any radial doppler displacement, as the excitation-ionization processes which
are due to atomic transitions of the luminous target surrounding medium take
place only when the target crosses a given point of a quasi-steady atmosphere
at a given instant. Atmospheric emission lines could only be broadened by gas
turbulent motions (refs. 1, 6, 10), which can be a mixture of normal
atmospheric turbulence and a possible "turbulence factor" which may
be induced by the target's hot surface or by another kind of target heating
source.
·
Rotational Velocity Vrot
If the target itself is fastly rotating, one could be able to observe emission
bands whose profile is rotationally broadened by a Doppler factor given by the
formula:
(11)
where Vrot is the rotational velocity of
the target and i is the inclination of the rotation axis in comparison with a
plane which is normal to the line of sight (ref. 6). If the surrounding ionized
gas is rotating as well, it could be possible to record atmospheric emission
lines whose profile is rotationally broadened by the same doppler factor given
above: this feature would be a clear indication of a "vortex regime"
present in the atmospheric gas, which is triggered by the central rotating
target. If the target itself is a strongly rotating plasma concentration one
could possibly record highly rotationally broadened atmospheric lines.
·
Infall Velocity Vin
In the case some atmospheric gas is collapsing toward the target, one could
record atmospheric emission lines which are red-shifted in comparison with the
laboratory lines, as the infalling atmospheric gas should depart from the
observer. This could happen if the atmospheric gas is subject to a strong local
gravitational field whose source is the UFO target itself.
·
Magnetic Field Intensity B
In addition to be thermally broadened by the predictable high temperature
regime (ref. 6), which can cause also micro-turbulence into the perturbed gas,
the emission lines can be subject to the Zeeman splitting effect because of the
action of a magnetic field (refs. 1, 6, 10).In this case every emission line is
expected to be splitted into a number of components which are differently
polarized according to the orientation of the magnetic field in comparison with
the direction of the observer and whose separation depends on the intensity B
of the magnetic field. If it is possible to obtain a S/N ratio which is high
enough and if the target is reasonably fixed (or semi-fixed), in which case it
is possible to carry out high-dispersion spectrography, one is allowed to get a
good measurement of the magnetic field intensity B of the target.
·
Period of Pulsation Pp
In the case in which sequential CCD spectrographic frames of a single target
are able to furnish a great number of spectra at a very short time-distance the
one from the other - for instance by using an indicative time-sequence of 20-30
seconds if the target is very luminous - and assuming to be in the right
conditions to carry out medium-high dispersion spectrographic measurements, one
could try to verify if the measured spectroscopic parameters - in particular
the magnetic field intensity B - are subject to some kind of pulsation effect.
|
|
5.
Time-variability of the physical parameters
Physical quantities
deduced from data processing are of little utility if one considers them
separately. The investigated problem can be fully understood only if all
quantities are connected together in a dynamical mode. For this reason one is
necessarily induced to search for significant correlations between the measured
parameters, on the basis of the detection of time-variable features. Possible
time-variability of the UFO phenomenon can furnish enlightening explanations on
its physical mechanism. This task can be achieved if one succeeds to acquire a
large amount of CCD frames - both photometric and spectroscopic - when/if the
trajectory of the target can be tracked for a reasonably long observational
time. For instance, if the target is very luminous and can be kept centered in
the telescope view-field for a duration of 30 minutes, one could obtain
typically 100-200 CCD frames in fast sequence, reminding that the
computer-controlled exposure time may change drastically if the UFO distance
changes. An analogous study of time-variability can be achieved by means of a
simoultaneous use of photon-counting photometry: in this case the PCP unit
should be pointed to the target for the whole duration of the phenomenon.
The time-variation
of the two following parameters must be previously ascertained:
·
The Linear Size S
This measurement is justified by the previous collection of some witnesses of
UFO events (ref. 13), regarding, on the basis of visual-suggestive stimulus,
possible variations of the dimensions of UFOs which are standing still.
·
The Intrinsic Luminosity LDn
As in the previous case it is necessary to perform also this measurement, as
reliable witnesses of UFO sightings report luminosity variations of UFOs which
are standing still (ref. 13).
Furthermore and
most importantly, according to the large amount of witnesses collected so far
(ref. 13), there is the suspect that the time-variation of the transfer
velocity of an UFO target may be correlated to analogous time-variations of the
following physical parameters:
·
The Color Index dL
Reliable witnesses of UFO sightings describe UFO colors turning from blue-white
in static or quasi-static configurations to red during fast accelerations. In
other cases, witnesses describe the opposite behaviour (ref. 13).
·
The Period of Pulsation Pp
Reliable witnesses of UFO sightings describe emitted light which is
characterized by a variable pulsation period when the velocity increases (ref.
13). In such a case it is necessary to measure the quantity dPp/dt,
where t is the variability time-scale.
·
The Intensity Gradients dIDn/dr and ddI/dr
As one may expect the existence of a particular "slope factor" sDn for each curve IDn = f(r) and dI = f(r) ( 0 £ r £ S/2 ) regarding the
intrinsic specific intensity and the color index respectively, it is of
fundamental importance to be able to evaluate the quantity dsDn/dt, which is defined as the
time-variation of sDn at every given wavelength window (U, B, V, R, I).
In particular, one could carry out this study by measuring, at every given
instant, the ratios s(U)/s(B), s(B)/s(V), s(V)/s(R), s(R)/s(I) and s(U)/s(I).
By adopting this procedure, one could achieve a compact method for studying the
possible time-variation of the surface light distribution of an UFO target.
This measurement is justified by the fact that time-variability of surface
light distribution of UFOs has been often reported by witnesses (ref. 13).
·
The Angle of Gravitational Deflection GD
Some witnesses tell about the sighting of "curved lights" which seem
to have been produced by some UFOs and which occasionally change their
curvature angle (ref. 13). Following descriptions reported by witnesses on this
phenomenology, repeated CCD images, containing both the UFO target and a laser
beam which is pointed at a fixed very short distance from it, could be taken
during the whole length of the sighting, in order to measure the possible
time-variability of the angle GD when the UFO is hovering, landing, standing on
the ground, taking off, accelerating and decelerating.
·
The Gravitational Redshift GR
The variation of parameter GR could be inferred from its contribution to the
time-variation of the color index.
·
The Rotational Velocity Vrot
Many witnesses of UFO sightings have had the impression that some UFOs were
rotating more or less fastly and that the rotation rate increased with the
transfer velocity of the UFO (ref. 13). Such a witness report could be
accurately confirmed by acquiring spectroscopical measurements of the possible
time-variation of the rotational velocity parameter.
·
The Magnetic Field Intensity B
EM interference effects on electric devices (ref. 13) together with some
physiological effects (ref. 13) affecting witnesses who approached occasionally
an UFO which was standing still, suggest that UFOs are surely surrounded by a
strong magnetic field. Therefore, it could be possible to measure the
time-variation of the magnetic field intensity B when a given luminous UFO
target is accelerating or decelerating, or when the emitted light is increasing
or decreasing. This measurement could be obtained by carrying out sequential
CCD high-resolution spectroscopic frames of an UFO target.
|
|
6.
Conclusive remarks
The search for
time-correlations between the discussed measurable physical parameters could
surely shed light on the physical mechanism which creates the UFO phenomenon.
The knowledge of such a physics could allow one to establish definitively if
UFOs are previously unknown natural phenomena or propulsed machines. In
particular, since now, it is necessary to pose three fundamental questions:
Before venturing
carefully prepared hypotheses, it is of fundamental importance to collect the
largest as possible amount of data by securing the following two simultaneous
observational strategies:
In particular, astronomers should try to infer what is acting inside an UFO, by studying the quality, the quantity and the variability of the continuum and discrete radiation which is emitted, in the same way in which these scientists are able to understand the physics of a star interior by studying the observed properties of a star atmosphere. This intriguing problem is still open and the tecnology for studing it is now fully available.
General
Physics and Astrophysics
1.
Gray D. (1976) The Observation and Analysis
of Stellar Photospheres, ed. J.Wiley & Sons.
2.
Janesick J. (1987) “Sky on a Chip: the Fabulous
CCD", Sky & Telescope, Sept. 1987, p.238.
3.
Henden A.A. & Kaitchuck R.H. (1982) Astronomical
Photometry, ed. Van Nostrand R.C., 1982.
4.
Hiltner W.A. (1962) Astronomical Techniques
(Vol.2 of "Stars and Stellar Systems" ), ed. Univ. of Chicago Press.
5.
Kitchin C.R. (1984) Astrophysical Techniques,
ed. A.Hilger LTD.
6.
Lang K.R. (1980) Astrophysical Formulae,
ed. Springer & Verlag.
7.
Mac Kay C.D. (1986) "Charge-Coupled
Devices in Astronomy", Ann. Rev.
Astron. Astroph. 24, p. 255.
8.
Misner C.W., Thorne K.S. & Wheeler J.A.
(1973) Gravitation, ed. Freeman.
9.
Warner B. (1988) High Speed Astronomical
Photometry, ed. Cambridge Univ. Press.
10. White L. (1975) Introduction to Atomic Spectra, ed. Mc.
Graw-Hill.
Applied
UFO Instrumental Monitor Projects
11.
Adams M. H. & Strand E.P. ,
“International Earthlight Alliance”, http://www.earthlights.org/
12.
Rutledge H.D. (1981) Project
Identification: The First Scientific Study of UFO Phenomena, ed. Prentice
Hall.
13.
Stanford R., “Project Starlight
International”, NICAP, http://www.nicap.org/madar/psi.htm
14.
Strand E. - "Project Hessdalen
1984: Final Technical Report - Part One", 1984 - http://hessdalen.hiof.no/reports/hpreport84.shtml
15.
Teodorani M., Montebugnoli S., Monari J., “Project EMBLA” (2000-2004):
http://hessdalen.hiof.no/reports/EMBLA-2000.pdf
http://www.itacomm.net/ph/embla2001/embla2001_e.pdf
http://www.itacomm.net/ph/radar/radar_e.pdf
http://hessdalen.hiof.no/reports/EMBLA_2002_2.pdf
General Ufology
16. Best witnesses of UFO sightings are reported and discussed in the papers
written by several very qualified UFO investigators (1950-2005) and sometimes
also by some dedicated professional scientists, engineers and university
professors who, wisely, definitively deleted the term “UFO” and substituted it
with “AOP” (Anomalistic Observational Phenomena). Significant examples are:
Adams M., Akers D., Ansbro E., Bach E.W., Bunnell J., Bougard M., Brovetto P.,
Clark J., Condon E., Constable T.J., Corliss W., Cornet B., Cramp L., Delaval
M., Derr J., Devereux P., Dutton R., Fort C., Friedman S., Haines R., Haselhoff
E., Hill P.R., Hendry A., Hourcade M., Hynek J.A., Jessup M., Jung C.G., Kasher
J., Klass P., Lollino G., Long G., Maccabee B., McCampbell J.M., McDonald J.E.,
Menzel D., Messeen A., Michel A., Oberg G.E., Odenwald S., Persinger M., Petit
J.P., Poher J.C., Pritchard A., Randles J., Reich W., Rodeghier M., Rubtsov V.,
Ruppelt E.J., Sagan C., Sheaffer R., Shuessler J.E., Simondini A.P., Stanford
R., Sturrock P., Tributsch H., Vallee J., Velasco J.J., Von Ludwiger I.,
Zeitlin G., Watts A., Yamakawa H. Most valuable works of serious scholars of
the UFO problem have been published on some reviews and reports of technical
orientation, such as: the Journal of Scientific Exploration (JSE-USA),
the Extraterrestrial Physical Review (Japan), the technical reports by
GEPAN/SEPRA (France), the MUFON reports (USA), the NICAP reports (USA), the
CUFOS reports (USA), the MUFON-CES reports (Germany), the SOBEPS reports
(Belgium), the EUS reports (Europe), the “Open SETI” website (USA). Moreover,
various books of scientific interest have been written on the UFO subject. One
of the best recent books which I would like to quote here is OVNIs: La
Agenda Secreta written by the South-American AOP scholar Milton Hourcade.
Some
peer-reviewed papers by M. Teodorani
concerning UFO instrumental monitor
17.
Teodorani M., Strand E.P. (1998) Experimental methods for
studying the Hessdalen phenomenon in the light of the proposed theories: a
comparative overview (Scientific Monograph with Referee), ØIH Rapport,
n. 1998:5, Høgskolen i Østfold (Norway), pp. 1-93. Booklet.
18.
Teodorani
M. (2000), “Physical data acquisition and analysis of possible flying
extraterrestrial probes by using opto-electronic devices”, Extraterrestrial
Physics Review, Vol. 1, No. 3, pp. 32-37.
19.
Teodorani
M. & Strand E.P. (2001), “Data Analysis of Anomalous Luminous Phenomena in
Hessdalen”, ICPH Articles, N. 3, http://www.itacomm.net/ph/hess_e.pdf / Also in: EJUFOAS, Vol. 1 (2), pp.
64-82.
20. Teodorani M. (2003), “SETV: Una Estensione del SETI?”,
SETI Italia Articles, http://www.seti-italia.cnr.it/Pagina%20Articoli/SETV.pdf
21.
Teodorani
M. (2004), “A Long-Term Scientific Survey of the Hessdalen Phenomenon”, Journal
of Scientific Exploration, Vol. 18, N. 2, pp. 217-251.
22.
Teodorani
M. (2005), “An Alternative Method for the Scientific Search
for Extraterrestrial Intelligent Life: The Local SETI”. In: J. Seckbach (ed.)
Book: Life as We Know It, Springer, COLE Books, Vol. 10.
Military Instrumentation
23.
The
Italian journal RID (Rivista Italiana Difesa) contains often
technical articles (1980-2005) regarding optronic tracking systems for military
use. The website of RID is: http://www.rid.it/
Additional Instrumentation
24.
Technical
informations on ICCD and EBCCD detectors can be found here:
http://www.isibrno.cz/~mih/clanky/ccddetlowel.pdf
http://www.jobinyvon.com/usadivisions/OSD/product/iccd.pdf
25. Di Cicco D. (1999) ‘A First Look: SBIG’s Enhanced ST-7E CCD Camera’, Sky
& Telescope, August, p. 64.
26.
Gavin M. (1999) ‘Cosmic rainbows: The Revival
of Amateur Spectroscopy’, Sky & Telescope, August, p.135.
27. A) CELESTRON Telescopes:
http://www.celestron.com/main.php
B)
MEADE Telescopes: http://www.meade.com/
28. SBIG CCD Cameras: http://www.sbig.com/
Specific Astrophysics of Gravitational Lenses
29. Fienberg R.T. (1988) ‘Of Gravity’s Lens and a Fly’s Eye’, Sky &
Telescope, May, p. 489.
30. Afonso, C., Alard, C., Albert, J.N. et al. and the EROS collaboration
(1999) ‘Microlensing towards the Small Magellanic Cloud: EROS 2 two-year
analysis’, Astron. Astrophys. n. 344, L63.
31.
Essential
references on Gravitational Lensing:
http://www.iam.ubc.ca/~newbury/lenses/lenses.html
http://astron.berkeley.edu/~jcohn/lens.html
http://vela.astro.ulg.ac.be/themes/extragal/gravlens/bibdat/engl/
APPENDIX:
Some examples of recurrent UFO phenomena on the Web
·
The Hessdalen lights in Norway
http://hessdalen.hiof.no/index_e.shtml
·
The
Marfa lights in USA
·
The Ontario lights in Canada
http://www.globalserve.net/~mallet/
·
Le Pine Bush lights in USA
http://www.pinebushufo.com/page1.htm
http://bcornet.homestead.com/files/index.htm
http://www.ural.ri/ufopics.htm
·
The Pennine Mountains lights in
Great Britain
http://www.hauntedvalley.com/lightsinfo.htm
·
The Min-min lights in Australia
·
The Victoria lights in Argentina
http://dragoninvisible.com.ar/victo.htm
http://www.rense.com/general30/more.htm
http://www.copernico-online.org/crossmenu.asp
NOTE
This work is the expanded
and vastly updated version of an invited paper which this author presented at: THE
FIRST INTERNATIONAL WORKSHOP ON THE UNIDENTIFIED ATMOSPHERIC LIGHT PHENOMENA IN
HESSDALEN - Hessdalen, Norway, 23-26 March 1994. More informations on
this valuable workshop, organized by Prof. Erling P. Strand of the Department
of Informatics and Automation of the Østfold College - Halden (Norway), can be
found at the website: http://hessdalen.hiof.no/index_e.shtml
The English
version of this paper has been published also on the European Journal of UFO and Abduction Studies
(EJUFOAS), Vol. 1 (1), pp. 2-25.
____________________________________________________________________________
BRIEF CURRICULUM BY THIS
AUTHOR
Massimo Teodorani is an astrophysicist. He was born
(October 31, 1956) and lives in Emilia-Romagna (North Italy). He got his Degree
in Astronomy at the Bologna University (Italy). Later, at the same university
he worked for his doctoral dissertation obtaining a Ph.D. in Stellar Physics.
He worked at the astronomical observatories in Bologna and in Napoli, as a
specialist in the observational and interpretative study of stars which present
eruptive behavior of various kinds, such as supernovae, novae, interacting
binaries, and protostars. He has been using several kinds of optical
telescopes, including the IUE ultraviolet satellite. Since very recently he has
been working as a researcher at the CNR radioastronomic station in Medicina
(Bologna, Italy) where, using a 32 m parabolic radio telescope and a
high-resolution multi-channel spectrometer, he carried out researches on the 22
GHz water spectral line in exoplanet candidates and in comets. Since 1994,
parallel with astrophysics, he studies from a physical point of view anomalous
atmospheric plasma light phenomena in strict collaboration with several
foreigner researchers. After preparing several technical research proposals in
order to study the phenomenon using the most sophisticated means of
astronomical kind and after analyzing the data which were acquired by the Project
Hessdalen researchers, he has been the scientific director of three Italian
explorative missions in Hessdalen (Norway), which have permitted to describe
precisely some aspects of the physics of the light-phenomenon. He is a member
of SETI in Italy, and the Italian responsible of the SETV variant. He is author
and co-author of many technical and divulging scientific works concerning both
astrophysical matters and anomalous atmospheric light phenomena. He is a member
of several scientific societies and since 2003 his name is cited in the
“Contemporary Who is Who”. He momentarily works as a science writer and as a
scientific consultant of a publishing house in Italy. Aerospace subjects,
electronic music and cats, are his main hobbies.