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A RECURSIVE ALGORITHM FOR THE MULTI-PEG
TOWER OF HANOI PROBLEM
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This paper gives a recursive algorithm to solve the multi-peg Tower of Hanoi problem. The algorithm is
based on the dynamic programming equation satisfied by the optimal value function, M(n, p), where
M(n, p) denotes the minimum number of moves required to solve the problem with n discs and p pegs:
This algorithm is the only one available, particularly for the case when p > 5.

KEY WORDS: Algorithms, Multi-Peg Tower of Hanoi, minimum partition numbers, recurrence
relations.

C.R. CATEGORIES: F.22,G2.1.
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1 INTRODUCTION

The multi-peg Tower of Hanoi problem, posed by Lucas in 1889, is as follows:
p(>3) pegs are fastened to a stand, and n(> 1) discs of different radii, D, D,, ..., D,
initially rest on the source peg, P,, in a tower in small-on-large ordering. The object
is to transfer the tower to the destination peg, P, th minimum number of moves,
under the condition that each move can shift only the topmost disc from any peg to
another such that no disc is ever placed on top of a smaller one. The 3-peg problem
is a popular puzzle of mathematical recreation. It has also gained some popularity
as an example of recursive procedure in many computing text books, such as Rein-
gold and Hansen [7] and Aho, Hopcroft and Ullman [1].

Let us call the problem with n discs and p pegs the (n, p)-system, and let M(n, p) be
the minimum number of moves required to solve it. Then, the dynamic programming
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68 M. KAYKOBAD et al.

equation satisfied by M(n,p) is given (see, for example, Wood [8] and
Hinz [4]) by

M#n3y=2Mn—-1,3)+1, nx=2, (1.1)
M(n,p)= min {2Mk,p)+Mmn—kp—1)}, n=2, p=4, (1.2)
1

i<k<n—

M(l,p)=1 forall p>3 (1.3)

Let I{n, p) minimize the expression on the right-hand side of (1.2). The number I(n, p)
would be called a minimum partition number for the given (n, p)-system. Thus, in
order to solve a given (n, p)-system with p >4 optimally, we have to find an optimal
number I(n, p) of discs which should be transferred to an intermediate peg using all
the p pegs, then move optimally the remaining (n—I(n, p)) discs on P, to the
destination peg, P,, using the (p —1) pegs available, and finally, move the !(n, p)
discs on the intermediate peg to P,, optimally, again using the p pegs. Thus, under
the optimal strategy described above, the problem of solving the given (n, p)-system
reduces to the problem of finding a number I(n, p), and then solving associated
subsystems, (I(n, p), p) and (n—l{n, p), p — 1).

This paper solves the (n, p)-system by finding upper and lower bounds of {(, p).
Since no explicit expression for I(n, p) is available in literature till now, our algo-
rithm is the only one to deal with the multi-peg problem (with p = 5). We have also
derived an expression for M(n, p), which matches with that given by Frame [3], but
his analysis is confined only to finding M(n, p).

2 OPTIMAL STRATEGY

Let M (n, p) be the number of moves required to transfer the-sth disc, D, (j=1,
2,..., n) from P, to P, under the optimal strategy.

LEMMA 2.1 Forallj=1,...,nand p=3,
M(n, p) = 244"P

Jor some integer k(n, p) = 0.

Proof The result holds true for p =3 with
kiin,3y=n—j for nzl,j=1,2,...,n
Also, obviously

ki, p)=0 forall p=3.

To prove the lemma by double induction on n and p, let us assume its validity for
some n and p.
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Now, according to the argument leading to the equation (1.2), the (n+ 1, p)-
system is subdivided into the two subsystems (I(n +1, p), p) and (n +1 —I(n + 1, D),
p—1), and D; belongs to one of these subsystems. In either case, the result follows
by the induction hypothesis.

Similarly, the (n, p + 1)-system is subdivided into the subsystems ({{n, p+ 1), p+ 1)
and (n—I(n, p+ 1), p). If D ; belongs to the second subsystem, the result follows by
the induction hypothesis. On the other hand, if D; belongs to the first subsystem,
then we have

Mjn, p+1)=2M(I(n, p+ 1), p+ 1)

If the right-hand side is unfolded further, we will find D, either in the second
subsystem, in which case the result would hold true by the induction hypothesis, or
else, D; will belong to the first subsystem with (p + 1) pegs and a smaller number of
discs. It may be noted that, each time D ; falls into the first subsystem, we have a
multiplication factor of 2. Continuing this, eventually, either we will come up with
D, in the second subsystem, or we will have the single disc D ;in the first subsystem
which requires 2° = [ move to reach p,,.

This completes the induction. [J

For any reN ={0,1,2,...}, let N(r, p) be the maximum number of discs each
of which reaches P, in exactly 2" moves using all the p pegs under the optimal
strategy, and let S(n, p) be the maximum number of discs each of which can be
shifted to P, in no more than 2" moves using the p pegs under the optimal strategy.
Note that, in defining N{r, p} and S(r, p), we do not restrict ourselves to particular
values of . '

LEMMA 22 Forallrz1and p>4,

N(r, P)=N(”:P_1)+N(r_ Ia p)
with
NO,p)=1 forall p=3,
N{r,3)=1 forall r>0.
Proof The 'boundary conditions are quite obvicus. To determine the recﬁrrence

relation satisfied by N(r, p), we observe that the discs each of which requires 2
moves to reach P, are '

(1) those which reach P, in 2" moves without visiting a particular intermediate peg
(and hence, the total number of pegs available in this case is p — 1),

(2) those which reach some intermediate peg in 2"~ moves and then reach P,
These give respectively the first and second terms on the right-hand side of the

recurrence relation. [
The following lemma would prove fruitful.
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LEMMA 2.3 (1) Foralll, meN

(2) For all reN and p >3,

@ N )= (” +’“3),
p—3
b _2
v se.=("*"3%)
() N(r, py=S(r, p—1),
(d) Sr+1,p+1)=Sr+1,p+Srp+1)

Now, given an (n, p)-system, let r(n, p) be the minimum value of r satisfying the
inequality

Mjn, p)<2®? forall j=12,....m% 2.1

also, let N, (r(n, p), p) be the maximum number of discs each of which requires
exactly 2P moves to reach P, from P, under the optimal strategy, so that

N, (r(n, p), p)=n—S8(r(n, p)—1, p). 2.2)

Then we have the following lemma which is evident from (2.1).

LEMMA 24 Forallnz=2and p23,
S(r(n, py— 1, p) <n < S(r(n, p).p).

The right-hand side inequality of Lemma 2.4 states that, n cannot be greater than
the maximum number of discs each of which can be moved to P, in no more than
2rP) moves using the p pegs, and the left-hand side inequality expresses the fact that
n must be greater than the maximum number of discs each of which requires no
more than 2"®P ™! moves to reach P, using p pegs.

It may be mentioned here that
rin,3)=n—1 forall n>1 (2.3)

The following lemma gives bounds on I(n, p).

LEMMA 2.5 Forallnz=2and p=4,

(1) n—S@(n, p), p— D <ln, p) <S(r(n, p)— 1, p),
strict equality signs would hold if and only if n=S(r(n, p), p),
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2) SCr(n, p) =2, P<In, Py<n—S(r(n, p)—1, p—1).

Proof (1) Since I(n, p) is the number of discs stored on some intermediate peg
(under the optimal strategy), each such disc reaches P, in no more than 2" -1
moves using all the p pegs. This gives the right-hand side inequality.

Similarly, the n—1 (n, p) discs still lying on P,, would each require no more than
2" moves to reach P,, and the available pegs are p — 1 in number, so that

n— l(n7 p) < S(T(ﬂ, p)’ P— 1)

This prove the left-hand side inequality.
To prove the other part, let

n—S(r(n, p), p—1)=I(n, p)=S(r(n, p)— 1, p).
Then, by Lemma 2.3 (2d), _
n—S(r(n, p)— 1, p)+ S(r(n, p)p— 1) = S(r(n, p), p).

Conversely, if n = S(r(n, p)— 1, p), then since

n—=S(r( p), p—1)=S(r(n, p)— 1, p),
we get

Str(n, p)— 1, p—1)<I(n, p) < S(r(n, p)— 1, p)
=1(n, p) =S(r(n, p)— 1, p)
(2) First note that
n—1n, p)< Ny (r(n, p), p)+ S(r(n, p)— lp =1, 24
since some of the n — I(n, p) discs lying on P, would be shifted to P, in 27"P moves

to reach P, using the available pegs.
Similarly,

i, p)< Np(r(n, p), p)+ S(r(n, p) -2, p). 2.5)
Now, from (2.4), using (2.1) and Lemma 2.3 (2d), we get
ln, p)2 S(r(n, p)— 1, p) = S(r(n, p)— 1, p— 1) = S(r(n, p) — 2, p),

which is the lefi-hand side inequality. Again, from (2.5), together with (2.2) and
Lemma 2.3 (2d), we have

I(”: p)<n—[S(r(n, p)_ 15 p)_S(r(n’ p)_za p)] =n~—S(r(n, P)“‘ la ) 1)9

giving the right-hand inequality.
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Thus the lemma is proved. [

Combining parts (1) and (2) of Lemma 2.5, we have the following main result of
the paper.

THEOREM 2.1 For n=2 and p =4, k(n, p)<l(n, p) < K(n, p), where

k(n, p)=max(S(r(n, p)—2, p), n—S(r(n, p), p— 1))~
K(n, p)=min(n—S(r(n, p)— 1, p — 1), S(r(n, p) = 1, p))

The above theorem is now exploited to devise a recursive algorithm to any (n,
p)-system with p > 4. The algorithm is as follows:

Algorithm Multi-Peg Tower of Hanoi (n, p, S, D)

/*n-disks, p-pegs, S-source peg, D-destination peg */
/* I(n, p)-optimal no. of disks to be placed on intermediate peg*/
if (n=1) then
shift top disk from S to D
else
Multi _Peg Tower _of _Hanoi ((n, p), p, S, P)

/* P, is an intermediate peg on which the smallest of the I(n, p) disks can be shifted
without violating the ordering rule */

Multi _Peg_Tower _of _Hanoi (n —I(n, p)p— 1, S, D)
Multi_ Peg Tower_of _Hanoi (I(n, p), p. P, D)
endif
end algorithm

Algorithm Multi__peg__Tower _of _Hanol
It may be mentioned here that the algorithms of Lu[6], Hinz[4], Chu and Johnson-

baugh [2], and Liefvoort [5] are for the 4-peg problem only.
We now have the following theorem giving an expression for M(x, p).

THEOREM 2.2 Forn >2 and p >3,
p+rn, p—3 =1 /pt+i—3
M(n, p)= 2P (n — ( + 2!
p—2 fj"o p-3

S(r(n, p)— 1, p) <n < S(r(n, p), p).

where,

Proof From (2.2), we get

r(n,p)—1

n=N,(r(np) )+ 3 N D).
t=0
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Now, each of the N, (r(n, p), p) discs requires exactly 2""» moves to reach P, from

Py, under optimal strategy, and each of the N, p) discs would require 2 moves
(t=0,1,...., r(n, p)—1) to reach P, from P,. Therefore,

r(n,p)— 1

M(n, p)=2"PN,(r(n, p), )+ . 2'N(, p).

t=0

Now, appealing to (2.2) and Lemma 2.3(2a), the theorem follows. [
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