How Bad Can A Heap Be?
Lenin Mehedy1 and Mohammad Kaykobad2

1 Real Time & Multimedia Lab, Department of Computer Engineering,
Kyung Hee University, 449-701, Republic of Korea.

2Department of Computer Science and Engineering, North South University,
Dhaka, Bangladesh.

Email: 1leninmehedy@yahoo.com, 2kaykobad@gmail.com
Abstract:

In this paper we construct worst possible full heaps in terms of sum total of number of comparisons and movements when top-down variant of the sorting phase is used. This construction also gives us the worst heap within one comparison and one movement for non-full heaps.

Keywords: heap, heap sort, priority queue, worst-case analysis
1 Introduction

It has been mentioned by Knuth (see p. 3 in [14]) that computer manufacturers of 1960s estimated running time of sorting algorithms on their computers to be more than 25 percent. This is why a significant number of sorting algorithms have been devised. Heap sort is one of the most efficient sorting algorithms in the sense that both its worst case and average case complexity is
[image: image1.wmf](log)

Onn

. There have been some recent developments in analyzing average-case and worst-case behavior and devising more efficient variants of heap sort algorithm by Carlsson[2], [3], Chowdhury and Kaykobad [5], Chowdhury et al[7], Edelkamp and Wegener [10], Islam et al[11], Islam and Kaykobad[12], Katajainen[13], Paulik[17], Wegner [18], [19], some of which have either a better leading coefficient than Quicksort algorithm or the fastest among different variants of heapsort algorithm. In addition, heaps are particularly efficient data structures for insertion, deletion and search operations each requiring logarithmic time, and therefore, are being extensively used for representation of priority queues. Numerous variants of this data structure have been devised and analyzed in Atkinson et al [1], Chowdhury et al[4], Ding and Weiss[8], Dobercat [9], Edelkamp and Wegener [10] McDiarmid[15], Olariu et al [16]. Both average and worst-case behaviors of heap sort algorithm have been subject to numerous investigations in the above references. In this paper, we have studied the exact worst case behavior of heap sort. In particular, we have studied the question of how bad exactly can the sorting phase of heap sort algorithm be. We have achieved the tight bound for full heaps and for other heaps differ from the worst possible case by at most one comparison and one movement.

This paper is organized as follows: Section 2 presents some basic observations on possible worst heaps and introduces an algorithm for construction of a heap. Section 3 contains some theoretical results that establish that the heap constructed using our algorithm is indeed the worst.
2 Some Observations and an Algorithm for Construction
Let us introduce the following notations and definitions to be used in the subsequent discussion. A heap on
[image: image2.wmf]n

 elements will be denoted by
[image: image3.wmf]()

Hn

. The root is said to be at level 0. A heap is represented in a complete binary tree in which nodes are filled up from top to bottom and left to right. Elements at level
[image: image4.wmf]k

 have indices from
[image: image5.wmf]1

2 to 21

kk

+

-

excepting possibly for the last level unless this is a full heap. A heap is full if its last level, namely level
[image: image6.wmf]h

, contains
[image: image7.wmf]2

h

 elements. Element at position
[image: image8.wmf]i

 will be often interchangeably referred to as element
[image: image9.wmf]i

. Element
[image: image10.wmf]1

 is said to be the root, whereas for element
[image: image11.wmf]i

, element
[image: image12.wmf]2

i

 is left son and
[image: image13.wmf]21

i

+

 is the right son provided these indices do not exceed n. Elements
[image: image14.wmf]2

i

 and
[image: image15.wmf]21

i

+

are said to be siblings. Since we will be concerned on the worst-case behavior of a heap in terms of number of comparisons and movements, without loss of generality we may assume that values are integers from
[image: image16.wmf]1

 to
[image: image17.wmf]n

. Two heaps are said to be symmetric if one can be obtained from the other by swapping even pair of siblings that are leaves. In the sorting phase these heaps result in the same heap
[image: image18.wmf](21)

k

H

+

 as in Fig. 2.1.
Let
[image: image19.wmf]C

 and
[image: image20.wmf]M

 be respectively number of element comparisons and number of movements in the sorting phase of the heap sort algorithm with top-down insertion of the last unsorted element. In the top-down version of heap sort the last unsorted element is pushed down through the chain of elder sons sequentially. Let us further assume that the cost of sorting phase of heap sort is proportional to
[image: image21.wmf]CM

+

. We are interested in finding the worst possible value of
[image: image22.wmf]CM

+

. From now on we will call comparisons and movements as operations. In the worst case of top-down version of heap sort, every unsorted element can be pushed down at worst to the deepest level and thus will need the highest number of total operations (comparison and movement), so long as there is at least one element left in the deepest level.
2.1 Observations
Observation 1: At most
[image: image23.wmf]2

 comparisons, one for determining elder son and the other for whether the element to be pushed down is smaller than the elder son and exactly
[image: image24.wmf]1

 movement are needed for pushing any element through
[image: image25.wmf]1

 level down. So it requires three operations in total to push any element through one level down. Thus for the last unsorted element at level
[image: image26.wmf]k

, maximum cost or operation is 3k to push it down to level k from level 0 unless it is the last element in level
[image: image27.wmf]k

. If an element is pushed down to level
[image: image28.wmf]i

and settles there then while number of movements is
[image: image29.wmf]i

, number of comparisons will be 2(i+1) since it can settle at level
[image: image30.wmf]i

 only after being compared with the elder son at level i+1.
Observation 2: When the last unsorted element is at position 2k , since its deletion will result in a heap with 2k-1 elements, it can be pushed down through at most
[image: image31.wmf]1

k

-

 levels implying that such an element will require
[image: image32.wmf]3(1)

k

-

movements in the worst case.
Observation 3: If an element is pushed down to its sibling, then in the last level,
[image: image33.wmf]1

 operation is lost since at that level the necessity of finding (through comparison) the elder son does not arise, although we do not lose any movement.

Observation 4: Any full heap will have the smallest two values
[image: image34.wmf]1

 and
[image: image35.wmf]2

at the deepest level since they are too small to be father nodes.

Observation 5: There is a unique heap with only seven elements, which requires the highest number of operations in the sorting phase for each unsorted element, and hence it is the worst heap for 7 elements (Fig. 2.1.a). We may have symmetric heaps by swapping the positions of siblings at the deepest level even number of times to come up with a different pattern (see Fig. 2.1.b). So there may be only one possible pattern not counting symmetric heaps. Hence if any heap with larger number of nodes cannot be reduced to any of these two patterns then further loss in operations will incur.

[image: image36]
2.2 An Algorithm for Construction of Heaps
Let us start with a heap H(7) of Fig. 2.1 . Given a heap
[image: image37.wmf](),7,(1)

HnnHn

³+

 can be created by pushing the path from root to element at position
[image: image38.wmf]1

n

-

, and then over flown element at position
[image: image39.wmf]1

n

-

 is placed at position n+1 (Fig. 2.2.b and Fig. 2.2.c). Note that this construction leads to heaps that loses
[image: image40.wmf]2

operations (1 comparison and 1 movement) per level from level 3 and onwards (see Fig. 2.2.b and Fig. 2.2.c) since element at position
[image: image41.wmf]21

k

+

 at level
[image: image42.wmf]k

 is placed at level
[image: image43.wmf]1

k

-

 at position
[image: image44.wmf]21

k

-

.
Heaps thus constructed will not be the worst for
[image: image45.wmf]912

n

££

, since it is possible to construct a heap of up to
[image: image46.wmf]12

elements without loss of operations (see Fig. 3.1 and Lemma 2). Construction of heaps with the given algorithm can be extended for a heap with
[image: image47.wmf]2

k

 elements by pushing element at position
[image: image48.wmf]2

k

 down and placing the over flown element in the next position to get a heap with
[image: image49.wmf]21

k

+

 elements. However, from then onwards only paths with suitable values in the last level can be pushed down to extend the heap further. In this way we may construct the worst possible (no loss of operations) heap with 12 elements (see Fig. 3.1) from the worst heap with 8 elements. This can be facilitated by using symmetric heap, although there is no guarantee that it can be done indefinitely.

[image: image50]

[image: image51]
3 Characteristics of Worst Heaps
We have the following results characterizing worst heaps.
Lemma 1: The smallest two among the values at level
[image: image52.wmf]k

 of the worst heap will occupy the positions
[image: image53.wmf]2 and 21

kk

+

, when there will be only two leaves left at that level during sorting phase.

Proof: Let us assume that there are m leaves in the deepest level
[image: image54.wmf]k

 of the worst heap and p and q be the smallest two values among the values at level
[image: image55.wmf]k

. Since this is a worst heap, p or q will traverse the path to the deepest level as long as there are leaves left at level
[image: image56.wmf]k

 during the sorting phase. Now if p and q occupy the positions
[image: image57.wmf]2 and 21

kk

+

 when there are more than two leaves left at level
[image: image58.wmf]k

, certainly there will be loss of operations when elements at positions
[image: image59.wmf]2+2 and 23

kk

+

will be pushed down in the sorting phase since they cannot travel to the deepest level. Hence as per algorithm in section 2.2 these heaps cannot be the worst. So p and q will not occupy both the stated positions as long as there are more than two numbers in the deepest level. Hence this proves the lemma.
Lemma 2: There are only three patterns for worst heaps with
[image: image60.wmf]12

 elements not counting the symmetric ones.

Proof: Since a 12-element heap will not lose any operations in the sorting phase it will end up with a 7-heap of Figs. 2.1a or 2.1b. In order to ensure no loss in operations, none of the elements will be entering the right subtree excepting possibly the 8th element in 8-heap, which must be 1 (or 2) (Fig. 3.1). So,
[image: image61.wmf]7

 will occupy position 3 and
[image: image62.wmf]1

 (or
[image: image63.wmf]2

) and
[image: image64.wmf]3

 will be its children . So a 12-element worst heap will contain
[image: image65.wmf]1

(or
[image: image66.wmf]2

) at the deepest level at position 12. Since the element at position 12 will be pushed down in the sorting phase through left sub tree,
[image: image67.wmf]11

 must be at position 2. Moreover, since at least
[image: image68.wmf]3

elements at positions 9 to 11 will again be pushed through the left sub tree, values 8, 9, 10 will also be in this subtree (Fig. 3.1).

For us not to lose any operations, element at position 12 i.e.
[image: image69.wmf]1

 (or
[image: image70.wmf]2

) must be pushed through position 5. Then
[image: image71.wmf]10

 should be at position 5 (Fig. 3.1). Assume this not to be true and 10 is at position 4.

[image: image72]
Then the possible values for 5th position are
[image: image73.wmf]6,8 or 9

. If 9 is at position 5 then after one iteration, element at position 11 will be forced to be pushed through position 5 to its sibling and cause the loss of operations (according to observation 3). Also if element 8 is put at position 5, element at position 9 will be forced to be pushed to position 5 and incur loss of operations. Thus the values
[image: image74.wmf]8 and 9

 are impossible for position 5 since that will force us to lose operations. Then the smallest possible value at position 5 is
[image: image75.wmf]6

. Now imagine the heap with 9 elements so obtained by pushing down three elements. Then the 8th and 9th positions will be occupied by
[image: image76.wmf]4

 and
[image: image77.wmf]1

(or
[image: image78.wmf]2

) respectively. So
[image: image79.wmf]5

 must be at position 4 (Fig. 3.2). Then the 9th element cannot be pushed down to the 8th position, since the chain of elder sons ends at position 5 containing element 6. Then again we lose operations. So
[image: image80.wmf]10

 must be at position 5.
Now we have elements
[image: image81.wmf]4,5,6 and 8

 to place in the positions 8 to 11 (Fig. 3.1) in the deepest level. Then the smaller of the values in positions 10 and 11 cannot be larger than the smaller of the values at positions 8 and 9 in order not to lose operations. Otherwise, when there will be 9 elements left, the smaller of the values at position 10 and 11 will be at position 5 and the smaller of the values at positions 8 and 9 will be at position 4. This will force us to place the 9th element at the 5th position, since the chain of elder sons ends at position 5. So the possible values for positions 8th and 9th are
[image: image82.wmf]8 and 6

 and the positions 10 and 11 will have values
[image: image83.wmf]4 and 5

.
Thus we have only three possible worst heaps (Fig. 3.1, Fig. 3.3.a and Fig. 3.4.a) for
[image: image84.wmf]12

elements with possible symmetric heaps (Fig. 3.1.b, Fig. 3.3.b and Fig. 3.4.b). We may further note that Figs. 3.1 and 3.3 will be reduced to Fig. 2.1.a. On the other hand Figs. 3.4 will be reduced to Fig 2.1.b, as we have already claimed this requirement in the beginning of this proof.

[image: image85]

[image: image86]

[image: image87]
Lemma 3: For
[image: image88.wmf]1315

n

££

, A heap with n elements will have a loss of two operations in the worst case.
Proof:
For
[image: image89.wmf]1315

n

££

, A heap with n elements will have the smallest two numbers in the deepest level. Now according to Lemma 1, a worst heap, with number of elements greater than 12, will reduce to 9-element heap such that the elements
[image: image90.wmf]2

and
[image: image91.wmf]1

 will occupy the positions
[image: image92.wmf]3

2

 and
[image: image93.wmf]3

21

+

 respectively. We know that in order to avoiding losing operations the heaps should reduce to any of the 7 elements of heaps of Fig 2.1a or Fig 2.1.b. Now from this pattern we can reach any of the unique patterns of seven elements, if and only if
[image: image94.wmf]1

 does not replace
[image: image95.wmf]2

(since then it will cause us to lose two operations -one comparison and one movement). Otherwise,
[image: image96.wmf]2

is pushed up to position
[image: image97.wmf]2

2

.

[image: image98]

Now suppose
[image: image99.wmf]1

 replaces
[image: image100.wmf]2

and
[image: image101.wmf]2

is pushed to position
[image: image102.wmf]2

2

. Now in the subsequent step
[image: image103.wmf]1

 can only occupy the position
[image: image104.wmf]2

22

+

 (Fig. 3.5) of the 7-element heap, because otherwise the values at other positions of level 2 will not be able to replace any of the smallest two numbers
[image: image105.wmf]2

and
[image: image106.wmf]1

 at positions
[image: image107.wmf]2

2

and
[image: image108.wmf]2

21

+

. Thus clearly that will not be the worst case. So we assume that
[image: image109.wmf]1

 occupies the position
[image: image110.wmf]2

22

+

. In the subsequent phase the value at position
[image: image111.wmf]2

23

+

 will occupy the position
[image: image112.wmf]1

2

 (Fig. 3.6) and it will have
[image: image113.wmf]2

and
[image: image114.wmf]1

 as the children. We may note that the value currently at position
[image: image115.wmf]1

2

 will definitely be smaller than the value at
[image: image116.wmf]1

21

+

 as only two iterations before it was a child of the value at
[image: image117.wmf]1

21

+

 (Fig. 3.5). Hence
[image: image118.wmf]1

 will not be able to occupy the position
[image: image119.wmf]2

2

 and thus there will be a loss of two operations. So this proves the lemma.
Lemma 4: For
[image: image120.wmf]3

k

³

 a full heap of height
[image: image121.wmf]k

 cannot be the worst heap if
[image: image122.wmf]2

is at position
[image: image123.wmf]2

k

.
Proof: We will prove this lemma using induction.

To prove the basis we take a 15-element heap with
[image: image124.wmf]2

at position
[image: image125.wmf]3

2

. According to Lemma 3, there will be a loss of at least two operations for the worst heap with 15 elements. As it is a full heap, we can say that
[image: image126.wmf]1

 and
[image: image127.wmf]3

are also at the deepest level. Moreover, the element at position
[image: image128.wmf]2

23

+

must be at least
[image: image129.wmf]4

. Now consider the situation when this heap is reduced to 11-element heap. In that case the smallest number
[image: image130.wmf]1

 must be at position
[image: image131.wmf]3

22

+

 and
[image: image132.wmf]3

will be at
[image: image133.wmf]3

23

+

 because otherwise clearly there will be a loss of more than two operations and that will not be a worst heap. In the subsequent steps eventually
[image: image134.wmf]3

will occupy the position
[image: image135.wmf]2

2

 , and
[image: image136.wmf]2

and
[image: image137.wmf]1

 will be its children. Since sibling of
[image: image138.wmf]3

is larger than
[image: image139.wmf]3

,
[image: image140.wmf]3

cannot be in the chain of elder sons, and therefore,
[image: image141.wmf]1

 cannot replace
[image: image142.wmf]2

. This will cause a loss of
[image: image143.wmf]2

operations. But as
[image: image144.wmf]3

is occupying position
[image: image145.wmf]2

2

, it will cause more losses. For clarification we refer to 7-element heaps of Figs. 3.7 and 3.8 that we arrive at. Here values
[image: image146.wmf]a

 and
[image: image147.wmf]b

 can be any of
[image: image148.wmf]5

 and
[image: image149.wmf]6

.

[image: image150]
Now we can easily verify that
[image: image151.wmf]4

 cannot replace any values at position
[image: image152.wmf]2

2

and
[image: image153.wmf]2

21

+

. So as a whole there will be a loss of more than
[image: image154.wmf]2

operations and that will not be the worst heap since section 2.2 gives us a better heap. This is also true if initially the position
[image: image155.wmf]2

23

+

 was occupied by any value greater than
[image: image156.wmf]4

. So the basis of the induction is proved.
Now we assume that this is true for heaps of height
[image: image157.wmf]k

, that is a worst full heap of height
[image: image158.wmf]k

 cannot have
[image: image159.wmf]2

at position
[image: image160.wmf]2

k

. Now we take a heap of height k+1 that contains
[image: image161.wmf]2

 at position
[image: image162.wmf]1

2

k

+

. We will show that this cannot be a worst heap as well.

As it is a full heap,
[image: image163.wmf]1

 and
[image: image164.wmf]3

are also at the deepest level and the position
[image: image165.wmf]1

21

k

+

-

 must hold at least
[image: image166.wmf]4

. Now according to Lemma 1,
[image: image167.wmf]2

and
[image: image168.wmf]1

 will occupy the leftmost positions and it is also clear that
[image: image169.wmf]3

will ultimately occupy the position
[image: image170.wmf]2

k

in the worst case (as it is shown in the basis step). Then clearly there is a loss of
[image: image171.wmf]2

operations at level
[image: image172.wmf]1

k

+

, and
[image: image173.wmf]1

 and
[image: image174.wmf]2

will be at some positions at level
[image: image175.wmf]k

 in the next steps. As
[image: image176.wmf]3

is at position
[image: image177.wmf]2

k

, it will not move unless
[image: image178.wmf]1

 and
[image: image179.wmf]2

occupies the left most position at level
[image: image180.wmf]k

 and pushes
[image: image181.wmf]3

to position
[image: image182.wmf]1

2

k

-

. Thus we will end up with
[image: image183.wmf]3

at
[image: image184.wmf]1

2

k

-

, and
[image: image185.wmf]2

and
[image: image186.wmf]1

 as its children in the worst case at level
[image: image187.wmf]k

. Similarly,
[image: image188.wmf]3

will occupy the positions
[image: image189.wmf]2

m

, where
[image: image190.wmf],1,2,3,...,2

mkkkk

=---

causing a loss of at least
[image: image191.wmf]2

operations in every level. So we will eventually come up with a heap of seven elements having
[image: image192.wmf]3

 at position
[image: image193.wmf]2

2

and that is not any of the possible patterns of heaps with seven elements as stated in observation 4. We may further argue that afterwards we will have the only possible pattern of a 5-element heap as in Fig. 3.9 and we will also lose
[image: image194.wmf]2

 operations at level 2.

[image: image195]
Thus existence of
[image: image196.wmf]2

at position
[image: image197.wmf]1

2

k

+

will cause a loss of at least
[image: image198.wmf]2

operations at every level including at level
[image: image199.wmf]2

, and therefore cannot be the worst since construction in Section 2.2 results in a heap with loss of lesser number of operations. This proves Lemma 2.
Theorem : Any full heap of height
[image: image200.wmf]3

k

³

will lose at least two operations in every level greater than
[image: image201.wmf]2

in the worst case.
Proof: The basis is proved as in the case of Lemma 3. Let it be true for level
[image: image202.wmf]k

. Now we prove for heap of height
[image: image203.wmf]1

k

+

.

As it is a full heap, certainly the smallest two numbers
[image: image204.wmf]1

 and
[image: image205.wmf]2

will be in the deepest level. Then according to Lemma 3,
[image: image206.wmf]2

will not be at position
[image: image207.wmf]1

2

k

+

. So by Lemma 1,
[image: image208.wmf]1

2

k

+

 and
[image: image209.wmf]1

21

k

+

+

 positions will be occupied by
[image: image210.wmf]2

and
[image: image211.wmf]1

 when there will be only two elements left in level
[image: image212.wmf]1

k

+

. Now if
[image: image213.wmf]1

 replaces
[image: image214.wmf]2

, then
[image: image215.wmf]2

will occupy the position
[image: image216.wmf]2

k

and certainly according to Lemma 2, the heap will not be the worst. So 1 will not replace 2 and thus there will be loss of at least
[image: image217.wmf]2

operations at level
[image: image218.wmf]1

k

+

. Hence this proves the theorem.
As the heaps constructed by the algorithm of Section 2.2 also satisfy Theorem 3.1, we may conclude that the algorithm in Section 2.2 indeed constructs the worst possible full heaps.
4 Conclusions and Future Works
While our investigation settles the issue of worst-case full heaps, but for other heaps there is a gap. In case of non-full heaps, our construction results in heaps which must be at most
[image: image219.wmf]2

operations away from being the worst. However, as we mentioned earlier, elements at positions
[image: image220.wmf]21

k

+

 and onwards can be filled up by pushing down suitable paths up to level
[image: image221.wmf]k

and then the over flown element placed in the next available position satisfying the heap property. But as have been proved in Theorem 3.1 in this way we cannot build a full heap without loss of operations. One can also investigate how good a heap can be in the sorting phase. These combinatorial results may enable us to make more precise analysis of the heap sort algorithm.
Acknowledgement
One of the coauthors thanks Mr Nitish K Biswas for early collaboration.
References
[1] M.D. Atkinson, J.R. Sack, N. Santoro, T. Strothotte. Min-max heaps and generalized priority queues, programming techniques and data structures.
Comm. ACM, 29 (10), 996-1000, 1986.
[2] S. Carlsson. Average case results on heapsort, BIT, 27, 2-17, 1987.

[3] S. Carlsson, J. Chen, C. Theor. Comput. Sci. Heaps with bits. 164, No.1-2, 1-12, 1996.

[4] R. A. Chowdhury, M. Ziaur Rahman, and M. Kaykobad. The Bounds of Min-Max Pair Heap Construction. Computers and Mathematics with Applications, vol. 43 (6-7), 911-916, 2002.

[5] R. A. Chowdhury and M. Kaykobad. Sorting Using Heap Structure. International Journal of Computer Mathematics, vol. 77 (3), pp. 347-354, 2001.

[6] R. A. Chowdhury, Suman Kumar Nath, and M. Kaykobad. The Heap-Mergesort, Computers and Mathematics with Applications, vol. 39 (7-8), 193-197, 2000.

[7] R. A. Chowdhury, M. Kaykobad, and Suman Kumar Nath, "A Simplified Complexity Analysis of McDiarmid and Reed's Variant of Bottom-up-Heapsort. International Journal of Computer Mathematics, vol. 73 (3), 293-297, 2000.

[8] Y. Ding, M. A. Weiss. The relaxed min-max heap-a mergeable double-ended priority queue. (1993) Acta Informatica, 30, 215-231, 1993

[9] E. E. Doberkat. An average case analysis of Floyd's algorithm to construct heaps. Inf. Control 61, 114-131, 1984.
[10] Stefan Edelkamp and Ingo Wegener. On the Performance of WEAK-HEAPSORT, H Reivhel and S. Tison (Eds.): STACS 2000, LNCS 1770, 254-266, 2000.
[11] M Mamunul Islam, M. Kaykobad, M. M. Murshed, and E. Amyeen. 3 is a more promising algorithmic parameter than 2. Computers and Mathematics with Applications, 36, 19-24, 1998.

[12] T. M. Islam, and M. Kaykobad. Worst-case analysis of a generalized heapsort algorithm revisited. accepted for publication in International Journal of Computers and Mathematics.
[13] J. Katajainen. The ultimate heapsort. In the proceedings of the Computing: the 4th Australasian Theory Symposium, Australian Computer Science Communications 20(3), pages 87-95, 1998.
[14] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching. Second Edition, Addison Wesley, reading, Massachusetts, 1998.

[15] C. J. H. McDiarmid, and B. A. Reed. Building heaps fast. J. Algorithms 10, No.3, 352-365 1989.

[16] S. Olariu, C. M. Overstreet and Z. Wen. A mergeable double-ended priority queue. Computer Journal, 34, 423-427, 1991.
[17] A. Paulik. Worst-case analysis of a generalized heapsort algorithm. Information Processing Letters, 36, 159-165, 1990.

[18] I. Wegener. The worst case complexity of McDiarmid and Reed's variant of BOTTOM-UP HEAPSORT is less than n log n+1.1n. Inf. Comput. 97, No.1, 86-96 (1992).

[19] I. Wegener. BOTTOM-UP-HEAPSORT, and new variant of HEAPSORT beating, on an average, QUICKSORT (if n is not very small).Theor. Comput. Sci. 118, No.1, 81-98, 1993.
Fig . 2.1.b

Fig 2.1.a

7

6

3

1

2

5

7

4

6

3

2

1

4

5

Fig. 2.2.b

9

6

1

3

7

8

2

Over flown

5

4

Fig. 2.2.a

3

Fig. 2.2.d

7

6

9

6

8

2

1

5

4

2

4

5

6

8

Fig 3.3.a

12

Fig 3.8

7

a

b

4

1

2

3

Fig 3.7

7

a

b

4

2

1

3

11

Fig 3.9

5

3

4

7

1

1

2

3

10

9

2

5

4

8

6

Fig 3.3.b

12

11

7

1

3

10

9

1

5

4

8

6

12

11

7

3

2

10

9

1

4

Fig 3.2

9

8

7

6

5

1

4

5

6

8

Fig. 3.1.a

12

11

7

3

2

10

9

Fig. 3.1.b

Fig. 2.2.c

8

6

3

2

1

5

4

7

3

7

2

3

5

4

10

1

1

7

c

2

b

a

Fig 3.5

5

c

6

d

1

2

b

d

Fig 3.6

11

12

8

7

1

4

9

1

5

4

8

6

12

11

7

2

3

10

9

Fig 3.4.a

Fig 3.4.b

PAGE
2

_1194945857.unknown

_1194955218.unknown

_1194955639.unknown

_1194955846.unknown

_1195074024.unknown

_1195074107.unknown

_1195075418.unknown

_1195075428.unknown

_1195075596.unknown

_1195074171.unknown

_1195074180.unknown

_1195074123.unknown

_1195074068.unknown

_1195074095.unknown

_1195074049.unknown

_1195072262.unknown

_1195073975.unknown

_1195073989.unknown

_1195072273.unknown

_1194955919.unknown

_1194956001.unknown

_1195072235.unknown

_1194956242.unknown

_1194955963.unknown

_1194955870.unknown

_1194955785.unknown

_1194955810.unknown

_1194955824.unknown

_1194955798.unknown

_1194955692.unknown

_1194955748.unknown

_1194955677.unknown

_1194955451.unknown

_1194955526.unknown

_1194955546.unknown

_1194955487.unknown

_1194955345.unknown

_1194955432.unknown

_1194955308.unknown

_1194954849.unknown

_1194955142.unknown

_1194955173.unknown

_1194955196.unknown

_1194955156.unknown

_1194955077.unknown

_1194955117.unknown

_1194955035.unknown

_1194953833.unknown

_1194954633.unknown

_1194954774.unknown

_1194954790.unknown

_1194954647.unknown

_1194954616.unknown

_1194954589.unknown

_1194953481.unknown

_1194953816.unknown

_1194953038.unknown

_1194953116.unknown

_1194952673.unknown

_1194952686.unknown

_1194946221.unknown

_1194945927.unknown

_1194945942.unknown

_1194944684.unknown

_1194945174.unknown

_1194945319.unknown

_1194945446.unknown

_1194945464.unknown

_1194945332.unknown

_1194945231.unknown

_1194945247.unknown

_1194945187.unknown

_1194945040.unknown

_1194945125.unknown

_1194945145.unknown

_1194945074.unknown

_1194945109.unknown

_1194945054.unknown

_1194944918.unknown

_1194944903.unknown

_1193974568.unknown

_1194119192.unknown

_1194165796.unknown

_1194167522.unknown

_1194168365.unknown

_1194170511.unknown

_1194165847.unknown

_1194120993.unknown

_1194140329.unknown

_1194119655.unknown

_1193974759.unknown

_1193975420.unknown

_1193976438.unknown

_1193977740.unknown

_1193979299.unknown

_1194085764.unknown

_1193981388.unknown

_1193979285.unknown

_1193978716.unknown

_1193977341.unknown

_1193977720.unknown

_1193977200.unknown

_1193975803.unknown

_1193975839.unknown

_1193976155.unknown

_1193975662.unknown

_1193975307.unknown

_1193974707.unknown

_1193974729.unknown

_1193974681.unknown

_1193974224.unknown

_1193974443.unknown

_1193974115.unknown

_1193974141.unknown

_1193973928.unknown

