
Tetrahedral Discretization of Complex Volumetric Spaces:
Implementation, Efficiency, Robustness and Interactive Control

Ashwini Patgawkar, Dinesh Shikhare, Satyashree Mahapatra, S. Gopalsamy and S. P. Mudur
National Centre for Software Technology,

Gulmohar Cross Rd. 9, Juhu, Mumbai 400049, India.�
ashwini,dinesh,satya,gopal,mudur � @ncst.ernet.in

Abstract

The problem of tetrahedral grid generation within volumes
bounded by triangulated surfaces has received considerable
attention in recent years due its significance in CFD anal-
ysis dealing with complex geometric bodies. Tetrahedral
discretization of volume is complex, and even more so when
the bounding surfaces are complex geometric configurations
of intersecting doubly curved surfaces, say, represented as
NURBS, as is usually the case for aircraft surfaces. In addi-
tion, the CFD analyst has to be provided with both quantita-
tive and qualitative controls over the grid generation process
in terms of the number of tetrahedral elements to be gen-
erated, their size, shape, local density, variation and so on.
The implementation related issues of efficiency, robustness,
scalability and interactive control are thus understandably
hard to handle. In this paper, we describe these issues in
detail and present the solutions we have implemented in our
grid generation system – VolGrid.

1. Introduction
The computational fluid dynamic (CFD) analysis by finite
element methods of 3D volumetric spaces, like the volume
surrounding an aircraft, rely on the availability of volume
grid generation tools. These tools enable rapid discretization
of a given volume into a set of simple 3D volume elements,
like tetrahedra or hexahedra. The motivation for discretiza-
tion is that the simple elements are easy to process in a
uniform way – the methods for processing complex entities
do not change with a change in the geometry. The complex-
ity of the analysis process increases only in a combinatoric
fashion when a more complex geometric configurations are
considered.

The CFD analysis codes have specific requirements of the
grids both in quantative and qualitative terms. Typically
this would include control over the number of elements,
their size, their shape, their local density, smoothness in
size variation etc. It is well known that grid quality affects
both efficiency and accuracy of CFD solutions [4]. Provid-
ing explicit parameterized control over these qualitative and

quantitative aspects of grid generation process is essential.

Apart from efficient algorithms for volume grid generation
with the above requirements, the other issue is to provide
a good 3D interface for defining/specifying the geometric
surface configurations that make up the volumetric space
of interest, for discretization, grid visualization and analy-
sis. There are challenging problems in visualization of 3D
geometries currently addressed by many researchers [5].

In this paper, we first discuss the important issues that need
to be tackled when providing an efficient and user friendly
volume grid generation tool and present how we have ad-
dressed them in our volume grid generation system VolGrid.

2. Tetrahedral Grid Generation Problem
Given a bounded volume defined in terms of oriented tri-
angulated surfaces, the volume discretization problem is to
decompose the volume into tetrahedral elements, such that
the union of these elements spans the enclosed volume and
intersection of any two tetrahedra is either null or a vertex
or an edge or a triangular face shared between them. Such a
grid or mesh is also required to retain the original points and
their the connectivity on the boundary of the volume, and
also not introduce any additional points on the boundary.

The quality of the grid is specified in terms of desirable
aspect ratio of tetrahedral elements and smoothness of vol-
ume gradients along any line considered within the bounded
region. The density of points along the boundary of the
volume provides the primary point distribution control for
the grid. For example, a dense distribution of points on
some part of boundary surface will cause dense distribution
of small tetrahedra near that region, and the density should
gradually dilate while moving to a boundary having less
dense distribution of points. In addition, a cluster of points
can always be introduced in the interior region of the volume
to get the desired density of points anywhere in the region
of interest.

A tetrahedral grid generation method can be evaluated based
on the following criteria:� Robustness: A method should be able to discretize

a volume, bounded by a surface configuration of any
shape.

� User control over grid quality: The method must
easily incorporate user controllable parameters for grid
quality by explicit specification of the quality measures.� Control over clustering: user specified clustering of
points in the volume should be achievable.� Speed: The method should be fast even for large num-
ber of points, i.e. the order of the algorithm should be
a polynomial of a small degree.� Capacity to handle large data sets: The data structure
should be usable for large input data sets.� Parallelism: A parallelisable algorithm is highly de-
sirable due to ubiquity of multi-processor machines.

2.1. Selection of tetrahedral grid generation
method

Many different tetrahedral grid generation techniques have
been reported and surveyed in the literature [3]. The most
popular methods in recent literature are advancing front
method [9, 10], sphere/bubble packing method [12] and
Delaunay-based methods [6, 15]. While the sphere-packing
method is probably the most robust and models the desired
qualities of grids explicitly in its formulation, its efficiency
largely depends on the final optimization phase. For large
grids it is bound to be slow. Advancing front method [9] re-
lies on heuristics for introducing interior points, which fail in
many special cases. A lot of special handling is required for
a robust implementation of advancing front algorithm. Our
experience has shown that in aircraft geometry such special
special cases often arise. We have chosen a Delaunay-based
method because it scores very high in its robustness. For
any set of points a Delaunay tetrahedral descretization ex-
ists. The algorithm does not rely on too many heuristics for
insertion and selection of interior points.

2.2. Associated Tools for Grid Generation

In a usable system, the basic grid generation algorithm must
be supported by various tools for effective usage in the com-
plete design cycle of a system such as an aircraft. The issues
involved in building such a complementary suite of tools are
listed below:

Data Preparation for Grid Generation: Surface grid gen-
eration tools generate surface triangulations on trimmed sur-
face patches of complex geometries. These individual trian-
gulated surface patches must be used to composite a single
volume. Many geometry correction and “repair” problems
need to be addressed.
Grid Analysis: The generated grid must be analysed for
qualitative and quantitative requirements of CFD analysis
system. Analysis capabilities must be integrated into grid
generation code to refine the grid to obtain grid of desirable
quality. Statistical analysis of the grids are often useful to
determine overall quality of grids.

Grid Visualization: Various inspection techniques such as
planar sections, sweeping planes, visiting specific regions
in volumes are required besides quantitative analysis.

3. Basic Delaunay-based Algorithm

In this section we outline the basic Delaunay-based tetra-
hedral discretization algorithm in 3D [13]. Later sections
will highlight the specific issues of efficiency, robustness
and quality.

3.1. Delaunay Criterion in 3D

An � -dimensional domain can be decomposed systemati-
cally into a set of packed convex polyhedra. For a set of
points �����
	��������������� , regions ��� can be assigned to ��� ,
such that ��� represents the space closer to ��� ,�����������! �#"$���% '&(�)"*�,+- /.-021�3
	�� (1)

These regions are called Voronoi regions.

If the points sharing a common boundary in the Voronoi
diagram are joined, then the result is Delaunay triangulation
of the convex hull of the set of points �����
	���4�5��������� .
A Voronoi vertex is equidistant from the points which form
the polyhedron and it is found to be the circumcentre of
the polyhedron. Thus, if a circumsphere of a polyhedron is
constructed, no other point will be contained in it.

3.2. Steps involved in 3D Triangulation

1. Input the boundary points �����
	���6�7�/������� , and the
boundary point connectivities of the facets ��8,+9	:�;0<���������= i.e, the surface grid, which encloses a volume.

2. Compute the bounding box of the input points and
construct a super-hexahedron out of it. This super-
hexahedron is then split into five tetrahedra to give the
initial triangulation for the Delaunay algorithm.

3. Insert the boundary points to obtain the tetrahedral
discretization, �9>�?�	:�A@B�C��������D , of the given set of
points.

4. Creation of field grid points.

5. Ensure that the surface triangulation is contained in the
volume triangulation. Recover missing facets, if any.

6. Identify the tetrahedra outside the domain of interest
and remove them from the grid.

7. Remove the points added on the boundary, during the
edge and facet recovery.

8. Smooth the grid.

4. Concerns and Issues
We first identify the implementation issues and then state
the solutions adapted in our implementation.

Integrity issues: The input to the Delaunay algorithm
should be a closed surface grid, which may or may not
contain concavities. An essential requirement is that the
grid should be boundary conformal. Also as mentioned ear-
lier, the boundary facets should be undisturbed. During the
point insertion process, local retetrahedralisation must not
introduce intersecting tetrahedra or almost flat tetrahedra.
Nor should there be any cavities.

Efficiency issues: The time critical steps mainly include the
following:
(a) The point insertion stage is the most time-consuming
one in the grid generation process, as it involves search
for all those tetrahedra in the existing grid, that violate the
Delaunay criteria.
(b) Connectivity queries need to be done during the local
refinement for, say, determining the tetrahedra connected to
a vertex or finding edges sharing a vertex, and so on.
Hence search and traversals must be efficiently carried out.

Quality issues: The minimum dihedral angles at the edges
of tetrahedra, must be maximised to get a high quality mesh.

Adaptivity issues: Capability to adapt and refine grids in
specific regions where CFD solver needs dense grids is nec-
essary. Refinement is usually specified in terms of points to
be inserted in an existing grid.

5. Data Structures
Accelleration techniques are needed for operations like
querying for a point or set of points lying in a specifiedspatial
neighbourhood, queries about topological neighbourhood
and sharing information between vertices, edges, triangles,
tetrahedra and meshes. VolGrid uses special data-structures
and consistency checks at various points in the algorithm.
The following data-structures have been implemented with
substantial benefits:
OctreeThis spatial data-structure [11] is adopted to speedup
queries about spatial neighbourhood. Insertion of every new
point in Delaunay-based algorithm requires determination
of a list of tetrahedra in the neighbourhood whose circum-
spheres include the point. This search is accelerated by the
use of an octree of inserted grid points. The octree inherently
has a tendency to occupy large space, and the growth must
be arrested. We restrict its growth upto a predetermined
depth, and leaf nodes at that depth are used as buckets for
linear search. The choice of depth of octree is determined
by space-speed tradeoff.
Radial-edge Data-structure All entities in VolGrid arecon-
structed out of simplices. A 0-simplex is a vertex identified
over a geometric point in 3D; a 1-simplex is an edge between
two vertices; a 2-simplex is a facet constructed using three
edges; and a 3-simplex is a tetrahedron having four facets
(with 6 edges and 4 vertices).

Surface-grid is constructed using a collection of facets form-
ing a manifold surface. A volume is composed using a col-
lection of facets defining a closed manifold geometry. A
volume-grid is a collection of tetrahedra spanning a given
volume.

The organization of topological entities is as per Figure 1.
The data structure implemented has been adapted from the
work reported by Muuss et. al [8] and Bruzzone [2]. Enti-
ties are classified as top-level entities, component entities,
and auxiliary entities. Vertex, edge, facet (triangle) and
tetrahedron are termed as components entities. Top-level
entites are surface-grid, volume and volume-grid are called
top-level entities since the user is exposed only to these en-
tites. The auxiliary entities are data-structures used only by
internal algorithms.

Vertex Vertex Instance

Tetrahedron

Facet

Surface Grid

Volume Grid

2

3

Component Entities

Volume

LoopNonSharedEdge

Auxiliary Entities

4static

static

F_Attrib

T_Attrib
Top level Entities

Octree

static

static

LoopCollection

SurfaceGrid Collection

Edge Edge Instance

Figure 1. Topology Captured in Radial-edge
Data-structure

Vertex is the only entity that directly refers to a geometric
entity called Point. The other higher-level entities only
refer to each other using pointers. We first examine what
relationships exist in surface-grids and volume-grids, and
also note the cardinality of each of the relationships.
The aim is to capture the connectivity relationships among
vertices and edges, edges and facets, facets and tetrahedra,
vertex and facets, vertex and tetrahedra, and edge and tetra-
hedra.

Note that the constant cardinality relationships can be triv-
ially captured using fixed number of pointers to the associ-
ated entities. The relationships such as: “edges connected to
a vertex” and “facets connected to an edge” are modeled us-
ing special entities called VertexInstance and EdgeInstance.
A vertex keeps a list of VertexInstances, each keeping a
pointer to an edge using the vertex, thus allowing a query
such as “which edges are connected to a given vertex?” Sim-
ilarly, an edge keeps a list of EdgeInstances, each keeping
a pointer to the facet using that edge. This mechanism al-
lows us to capture the other variable cardinality relationships
like “which facets are connected to a vertex?” and “which
tetrahedra are connected to an edge?” and so on.

Figure 2. Composing a volume from surface tri-
angulations.

6. Volume Data Preparation
The method of grid generation inside a volume requires
a well defined volume bounded by one or more surfaces.
VolGrid accepts bounding surfaces as surface grids. For
example, to prepare a volume definition of an aircraft sur-
face in an enclosure such as a huge sphere, the following
procedure may be followed:

Figure 3. Aircraft placed inside a large sphere.
The aircraft surface forms the inner boundary and
the sphere forms the outer boundary of the vol-
ume

1. The parts of aircraft surface, represented by surface
grids generated in a grid generation package, can be
loaded independently and a single surface grid could be
generatedby merging these parts along their boundaries
(see Figure 2). The gaps in the geometry should then
be closed by forcing a local merging of geometry or by
local triangulation.

2. Such a connected component then may be placed in-
side a large enclosure such as sphere or cylinder with

PPn

Seed
t1

nt11

nt12

nt21t2

nt32

nt22
t3

nt31

Figure 4. Point insertion

closed ends, or any other appropriate shape. Tools for
generating primitive shapes such as triangulated boxes,
spheres, cylinders, hemispheres and ellipsoid are pro-
vided (see Figure 3).

3. The elements of the surface grids should be consistently
oriented such that the normals of the elements point
away from the domain of interest for grid generation.

7. Implementation in VolGrid

7.1. Insertion of points

The Delaunay algorithm starts with the insertion of all the
boundary points. To initiate the process, as already men-
tioned a super hexahedron split into five tetrahedra is created
and then the boundary points are inserted iteratively. When
a new point is to be inserted in the existing triangulation, the
set of tetrahedra whose circumspheres contain the point, are
found. E�F,G " F:HIE &*J (2)F G

- coordinates of circumcentreF:H
- coordinates of point to be insertedJ - circumradius of the tetrahedron

These tetrahedra violate the Delaunay criterion and hence
are removed to form a cavity, bounded by the facets, all of
which are visible to the new point. These facets are then
connected with the point to form the new tetrahedralisation.
Figure 4 illustrates the boundary point insertion stage, with
a 2D analogy. The detailed explanation is as follows:

1. � is the point to be inserted in the grid. The nearest
point, � H is searched for, in the octree.

2. Query all the tetrahedra sharing � H .

3. A tetrahedron, KAL , is found, whose circumsphere con-
tains � . KAL forms the seed for the recursive algorithm
to obtain the cavity.

4. Visit neighbours of K L to find all other tetrahedra, whose
circumspheres contain � . Here, KAL , K�M , K�N form the

P

Hole
Formed

Figure 5. Creation of a flat tetrahedra due to the
position of point along the plane of the facet

P

Hole Formed

Figure 6. Creation of intersecting tetrahedra due
to the position of point just below the plane of the
facet

tetrahedra to be deleted, leaving behind a polyhedron,
bounded by facets.

5. Connect � to the facets of this polyhedron and validate
the new tetrahedralisation formed.

Validity and Integrity Checks
During the point insertion phase, not all points can be in-
serted into the grid due to various reasons. This could be due
to floating point accuracy problems, or due to the internal
geometry structure, that is formed in the triangulation pro-
cess. The circumsphere check is a floating point operation
and may result into flat or intersecting tetrahedra.
In Figure 5, the point, � is to be inserted in the grid. It lies
almost along the plane of one of the facets of the polyhedral
hole, that is formed by deleting all the tetrahedra, whose ci-
cumspheres contain � . This facet cannot be deleted as � lies
just outside the circum-sphere of the tetrahedron containing
it.

Another case, which needs to be handled is shown in Figure
6. The geometry of the hole may be star-shaped and the
point, � may lie such that it may not be visible to one of the
facets of the hole. This may lead to intersecting tetrahedra.
A point may lie very close to a facet,however the tetrahedron

Figure 7. Creation of a flat tetrahedra due to the
position of point just above the circumsphere of
the tetrahedron

containing this facet may not get deleted because of its large
circumsphere as shown in Figure 7.

In order to avoid such inconsistencies, certain checks need
to be made to ensure a valid grid, during the local retetrahe-
dralisation. These include the following:

1. Volume of a tetrahedron should not be zero (Figures 5
and 7).

2. Sum of the volumes of tetrahedra to be deleted should
be equal to the sum of the volumes of new tetrahedra
to be formed (Figure 6).

3. To avoid intersecting tetrahedra, a checkshould be done
to find the location of the new point with respect to the
facet, with which it forms the tetrahedron, i.e, whether
point lies on/above/below the facet (Figure 6).

The points that cannot be inserted into the grid due to rea-
sons discussed above, are kept aside till all other points are
inserted. As the internal geometry gets modified with every
point insertion, it is possible that the points thus set aside
get included later. Hence, an attempt is made to insert these
points again. A few points could still remain that cannot be
inserted in the grid.

To facilitate the insertion of these "hard-to-insert" bound-
ary points, it is necessary to modify the geometry around
them. Hence, a dummy point is created in the vicinity of
the non-inserted boundary points, which will disturb the lo-
cal tetrahedral structure and may allow point insertion. The
position of this point is at the centroid of the neighbourhood
of the point to be inserted.This dummy point, not being part
of the boundary, is removed from the grid at a later stage.

7.2. Creation of field points
The insertion of points in the interior is based on Weatherill
and Hassan’s approach [15]. The boundary of the domain is
defined by the points and their connectivities, which reflect

vertex - vertex

edge - edge edge - facet facet - facet

vertex - edge vertex - facet

A

B

A

B

A

B

BBB

A

A

AA

Figure 8. Possible cases of intersection of the
missing edge with the tetrahedra

the appropriate variations in the surface slope and curva-
ture. The field point creation method should ensure that the
boundary point distribution is extended into the domain in a
spatially smooth manner.

In this method a Point Distribution Function (PDF) is defined
for each point as the average of the lengths of the connected
edges. O9PRQ � �= ST L JA��"UJ Q (3)

Any point which is placed within this distance forms a bad
triangulation.

A point is inserted at the centroid of every tetrahedron >:+ , ifO�VXW*Y�O9PRZ
(4)

where,O�V
distance of the point from the vertex forming
the tetrahedronO9P Z
PDF of the centroid, obtained by interpolating
the PDFs of the four vertices of the tetrahedron

If the point satisfies the Eq. 4, then it is inserted into the
domain provided, [+ W]\�O9P V (5)

where,[+ distance of the point from other valid centroidsO9P�V
PDF of the point^-_ P,` ^ controls the gridpoint density by changing the
allowable shape of the formed tetrahedra\
influences on the regularity of the triangula-
tion by not allowing points within a specified
distance of each other to be inserted in the field

7.3. Boundary Conformity

Delaunay algorithm, by its property, triangulates the given
set of points into its convex hull domain and hence, the
boundaries of the input volume are not always preserved in
the volume grid. In order to ensure that the boundary point

A
B

C

A

C

B

B

C

A A

B

C

A

B

C

ABC - Missing Facet

- Point to be inserted
 for facet recovery

Figure 9. Penetration of tetrahedra through the
missing facet

connectivities of the surface grid exist in the volume grid
too, it is necessary that:

1. all the boundary points be present in the volume grid
(This is ensured in the point insertion stage.),

2. all the boundary edges exist in the volume grid,

3. the boundary facets are contained in the volume grid.

Some of these missing facets and hence, the edges, can
be retreived by the edge swapping technique. Also, it is
found that the absence of some of the boundary edges or
facets is mainly due to the penetration of tetrahedra through
the surface boundary. A few of these cases are shown in
the figures 8 and 9. These can be recovered by inserting
points at the intersections of these penetrating tetrahedra
and the missing boundary edges/facets, as explained in the
subsequent sections.

Some researchers, for example [1], have implemented this
step immediately after the boundary point insertion stage
and then headed for field point creation. However, there are
certain cases, as shown in Figure 10, where, the field point
insertion may spill the tetrahedra outside the boundary, thus,
arising a need to put constraints on the field point insertion
or redoing the boundary conformity step. To avoid this, we
implement the boundary conformity stage after the insertion
of field points. The various techniques which are carried out
for edge/facet recovery in grid generation are stated below:� Point insertion at the midpoint of the missing edge.

This method was tried out, but edge/facet recovery is
not always guaranteed, as the connections are done
using Delaunay criterion. Also, this involves insertion
of too many points [14].� Only swapping of edges (as reported in [1]).� Addition of points along the intersections of the missing
elements and the grid elements. Here the added points
are directly connected to the grid elements [15]. The
implementation of this technique is discussed here, in
the following section.

v1 v2 v3

v6

v9v10

v1 v2 v3

v4

v7v6

v5

v9 v8v10

v11

v5 v4

v7

v8

v11

After Field point insertionAfter initial Delaunay

Figure 10. Spilling of tetrahedra outside boundary
after field point insertion

A

B

C

D

C

B

D

A

Before Swapping After Swapping

Figure 11. Face swapping

Edge Swapping
It is possible to make the boundary facets in the volume
grid to be coincident with the boundary faces in the sur-
face grid by swapping some edges in the boundary surface
triangulation.

Edge swapping is not usually preferred as it alters the sur-
face triangulation, which is not desired, as it may lead to a
mismatch in case of merging of two volume grids. In this
case, the swapped facets can be tagged and later, reverted
back to the original geometry after the removal of exterior
tetrahedra. Swapping of facets in the volume grid is an al-
ternate solution, as shown in Figure 11. Here, the triangles
ABD and BCD are a part of the the surface grid but, ACD
and ABC exist in the volume grid. AC can be replaced by
BD in the surface triangulation. Swapping helps in reducing
a great amount of work to be carried out in the recovery of
missing edges and facets.

Edge Recovery
After applying the edge swapping technique, there may be
a few edges and hence, the facets, which may be missing in
the volume grid. These can be recovered by adding points
at the intersection of these with the tetrahedra. An edge may
intersect multiple tetrahedra, hence,the intersection routine
should be fast enough to determine all the intersection points
and the positions of these points with respect to the tetra-
hedron. An edge may intersect the tetrahedron in various
ways as shown in the Figures 8

The algorithm to compute all the intersection points for a
missing edge abLdc!M is as follows:
1. Find all the tetrahedra sharing vertex e:L of abLdc�M .

2. Find the first tetrahedron, K , which intersects afLdc!M , either
along the edge or along the facet or vertex.

3. If the intersection point,
P � , is a vertex then that means a

part of the edge is already present in the grid and it is tagged
as boundary edge. if the intersection vertex is e�M of abLdc!M ,
then the edge recovery is complete. Else, if it is a facet or
an edge, then all the tetrahedra sharing this facet or edge are
removed and the intersection point is connected to the facets
of the polyhedron that remains after the tetrahedra deletion.

4. If
P � 1�ge M , then e L =

P � , and steps 1-3 are repeated.

The above steps are repeated until all the missing edges are
recovered.

To facilitate the determination of intersection points, the
sub-entities of a tetrahedron are given status numbers (see
table). The intersection routine takes the start point and
its status as input parameters and computes the intersection
point and its status. Thus,the type of connections to be done,
can be easily determined with the help of status numbers,
i.e, if the point of intersection lies along the edge, then the
tetrahedra sharing the edge need to be deleted. With every
intersection, the edge is partially or fully recovered.

The edge starting from any of the vertex or edge or facet of
the tetrahedron always intersects the facetopposite to it. And
the resulting intersection is a vertex or edge of this opposite
facet. Hence, a mapping of each of these sub-entities with
its opposite facet is stored in the table. eg., h�ije:Lk"le�M�"le9N9m
is the facet opposite to e9n as shown in the following table:

Element Status No. of Op-
posite facets

Opposite
Face statuse9n 0 1 13e L 1 1 12e M 2 1 11e9N 3 1 10o ipe n "]e L m 4 2 12, 13o ipe9nq"]e�MAm 5 2 11, 13o ipe9nq"]e9N�m 6 2 10, 13o ipe:Lk"]e�MAm 7 2 11, 12o ipe L "]e N m 8 2 10, 12o ipe M "]e N m 9 2 10, 11h�ipe9n�"re:L�"re�M�m 10 3 11, 12, 13h�ipe n "re L "re N m 11 3 10, 12, 13h�ipe9n�"re�Ms"re9Ntm 12 3 10, 11, 13h�ipe:L�"re�Ms"re9Ntm 13 3 10, 11, 12

Boundary Facet Recovery
The presence of all the boundary edges does not imply the
presence of all boundary facets in the volume grid. Some
of these facets may be missing or may be present in the
grid in the split form. The missing facets can be recovered
in a similar way, as the missing edges, by identifying the
tetrahedra which intersect it and then by adding the points
at the intersection of the two.

The recovery mechanism goes as follows:
1. Query the tetrahedra connected to one of the vertices

of the missing facet, hu� .

A

B

v1 v2

v3

AB - Edge to be recovered
v1, v2, v3 - Points added on the Boundary for edge recovery.

e1
e3

e2

e1, e2, e3 - Edges which intersect the edge AB

Figure 12. Insertion of points for edge recovery

2. Find the first tetrahedron,t which intersects hu� , either
along the edge or in the interior of hu� .

3. Query the edges of K , and find the edges intersectinghu� . If the edges of K intersect at the vertex then, the
facet formed by these vertices is found and tagged as
a boundary facet. Else, intersection point is computed
and inserted into the grid by making simple connec-
tions.

4. Visit the neighbour of K . Go to step 3.

The steps 2 and 3 are repeated till the complete facet is
recovered.

7.4. Removal of tetrahedra outside the domain of
interest

Since the delaunay algorithm tesselates in the convex hull of
the given set of points, there are tetrahedra which are gener-
ated outside the domain of interest. These exterior tetrahedra
include those in the concavities of the object and also in the
region between the object boundary and the boundary of the
super hexahedra. These should be identified and removed
from the grid to obtain the tetrahedrulated version of the
given volume.

Here, we make use of the orientation of the facets to identify
the extraneous tetrahedra. The boundary facets are assumed
to be oriented such that their normals point away from the
object. Another property of the boundary facets is that the
tetrahedra share-count should be one.

One of the two tetrahedra,sharing the same boundary facet is
exterior to the domain. A first such external tetrahedron, K�v ,
is determined using facet orientation, which forms the seed
for the removal algorithm. The others can then be found by
walking through the neighbours of K�v recursively. A given
volume may have more than one concavity, hence the above
step needs to be repeated till all the boundary facets have a
tetrahedra share-count of one.

7.5. Removal of added boundary points
The points, added along the boundary, during the boundary
recovery stage, are not a part of the given input boundary,

 N
_

Interior Triangle

Exterior Triangle

N - Normal to the boundary
facet.

Figure 13. Removal of tetrahedra, generated out-
side the surface boundary

v2 v1 P

P - Point added along the boundary for boundary recovery

v1, v2 - Points along the boundary

Figure 14. Removal of point added on boundary
for Boundary Recovery

and should be removed after the grid generation process is
complete.

For this, the tetrahedra connected to it are found and deleted,
leaving behind a concavity. The facets of this concave region
are then connected in a simple manner to one of its boundary
vertex to yield a valid triangulation. (see Figure 14)

Validity checks need to be done while doing the connections
in order to avoid flat or intersecting tetrahedra.

7.6. Smoothing
The quality of the mesh is defined by the quality of its el-
ements. Smoothing is a way to improve the grid quality
by relocating the interior grid points. A common technique
used to smooth the grid is the Laplacian technique, which
repositions a point to the centroid of the kernel of its neigh-
borhood. w�x � �� T�zyR{ P � (6)

where,

w�x
is the centroid and

P � are the neighbouring points
Here, we have used Laplacian algorithm with a difference.
[7] talks about closer ties between the face-areas and di-
hedral angles in a perfect tetrahedra. Hence the shape of
tetrahedra can be determined by their dihedral angles. A di-
hedral angle is the angle between the two connected facets
of a tetrahedron.

P P

After Smoothing

(with dihedral check) by moving point to the kernel of
 its centroid)

(
After Smoothing

P

Before Smoothing

Figure 15. Comparison of smoothing techniques

Figure 16. Wireframe viewing of volume consist-
ing of aircraft wing inside a hemisphere

We opt to shift an interior point to the centroid of its neigh-
bourhood provided it results into a better geometry, com-
puted in terms of the dihedral angle. The minimum dihedral
angle is computed before and after shifting. If the latter is
better, then the point is repositioned at the centroid of its
neighbourhood, else, its earlier position is retained.

Figure 15 shows a part of the grid before and after smoothing.
It also compares the smoothing with dihedral check and that
by shifting the point to the centroid of kernel of the connected
geometry.

Validity checks need to be done to ensure that there are no
intersecting or flat tetrahedra as described above in Validity
and Integrity Checks.

8. Visualisation and Analysis
The tetrahedra generated could range from few hundred to
millions in number, and hence complex to simply view them
on a 2-D screen. VolGrid provides a number of techniques
that help visualisation and analysis of the mesh, interac-
tively.

8.1. Visualisation
Wireframe display: The grid can be viewed as a wire frame
model. In this model, all edges of volume grid are drawn on
the canvas with the user specified viewing parameters (see
Figure 16).

Planar sections: Planar sections can be taken across the
volume grid along a user specified plane. As clipping leads
to incomplete elements, it does not serve the purpose. Thus
the distribution of volume across the grid can be visualised,

Figure 17. Planar section of tetrahdral grids

Figure 18. Inspection of surface grids and volume
grids as VRML worlds

which is nothing but the volume gradient (see Figure 17).

Slicing: The difference between the planar sections and the
slice is that, slicing maintains complete elements. Here,
an isosurface cuts the volume grid, leaving behind a set of
tetrahedra that are not intersected by the plane.

Viewing as a VRML world: VolGrid can export the grid as a
VRML world. This can be viewed using any VRML viewer.
Viewing as a VRML world is supported for the surface grid
as well as volume grids. (See Figure 18).

8.2. Analysis

VolGrid incorporates surface grid analysis as well, in addi-
tion to the volume grid analysis. In both the cases, analysis
is done by calculating properties across its elements, which
define the grid quality.

The properties computed for analysing the surface grids are
aspect ratio, area of an element, minimum and maximum
angles between edges meeting at a vertex, number of ele-
ments, surface area of the surface grid, enclosed volume (if
the surface grid is closed), number of boundary loops.

Needle Wedge

Sliver Cap

Figure 19. Poorly shaped tetrahedra

The volume grid analysis involves the following:
Aspect Ratio: The definition used for aspect ratio is “the
ratio of length of the longest side to the length of the shortest
side.” An equilateral tetrahedron will have all sides of equal
length. In an isotropic volume grid, the average aspect ratio
should be as close to unity as possible.

Dihedral Angle: Figure 19 illustrates some tetrahedra hav-
ing reasonably acceptable aspect ratios, however they are
either flat, thin or slivers. Hence, the aspect ratio may not
reflect the “quality” of the tetrahedra. The dihedral angle
parameter represents the angle between two facets meeting
at an edge and hence is a better measure. It is computed as
the angle between the normals to the facets.

Solid Angle: Solid angle at a vertex of a tetrahedron is
measured by placing the vertex at the center of a unit sphere
and finding the area subtented on the surface of the sphere
by the sides of tetrahedron meeting at the vertex. Solid angle
is given as:| �)K ^ � csLf} ^�~���� w�k� ^�~t� � ��~ w � w ~�^s� (7)

where, ^ � � and

w
are vectors corresponding to the edges

meeting at the vertex.

Volume: Volume of a tetrahedron is given by one sixth of
the scalar triple product of vectors meeting at any of the
vertices of the tetrahedron.��� �� i ^�~���� w m (8)

Gradient of volume field: The change in the volumes of
the tetrahedra may vary abruptly or smoothly across the
grid. To determine the variation in volumes, we determine
the gradient, which is the absolute difference between the
volumes of neighbouring tetrahedra. The volume gradient
analysis gives the maximum and minimum volume gradient
values in the grid.

9. Future Work
VolGrid is a complete solution for building up of a volume
data and achieving its tetrahedral decomposition, along with
the tools for its visualisation and analysis. Major stress has
been put on making the package user-friendly and robust.

Future pursuit will largely be toward achiving multi-million
tetrahedra grids for entire aircraft geometries put inside
wind-tunnel-like enclosures. The current work concen-
trates on improving the data-structures for accomodating
large grids, multi-block strategies for unstructured tetrahe-
dral grids, new grid visualization and analysis techniques.

Acknowledgments
This work has been funded by Aeronautical Development
Agency (ADA), Bangalore. The authors acknowledge the
help and suggestions received from the members of the CFD
Group at ADA.

References

[1] H. Borouchaki, F. Hecht, E. Saltel, and P.-L. George. Rea-
sonably efficient Delaunay based mesh generator in 3 dimen-
sions. In 4th Annual Intl. Meshing Roundtable, Oct. 1995.
http://www.ce.cmu.edu/ sowen/Roundtable.agenda.html.

[2] E. Bruzzone and L. D. Floriani. Two data structures for
building tetrahedralizations. Visual Computer, 6(5):266–
283, 1990.

[3] D. A. Field. The legacy of automatic mesh generation from
solid modeling. Computer Aided Geometric Design,12:651–
673, 1995.

[4] L. Freitag and C. Ollivier-Gooch. The effect of mesh quality
on solution efficiency.In Proceedings of the 6th International
Meshing Roundtable, October 1997.

[5] C. Gitlin and C. Johnson. Meshview: A tool for exploring
3d unstructured tetrahedral meshes. In Proceedings of the
5th International Meshing Roundtable, October 1996.

[6] N. Golias and T. Tsiboukis. An approach to refining three-
dimensional tetrahedral meshes based on Delaunay transfor-
mations. Intl. J. Numer. Meth. Eng., 37:793–812, 1994.

[7] D. McConnell. Hedronometry, 1993.
(http://www.ics.uci.edu/ẽppstein/ junkyard/) Worcester
Polytechnic Institute.

[8] M. MJ and B. LA. Combinatorial solid geometry, boundary
representations and � -manifold geometry. In Rogers and
Earnshaw, editors, State of the art in Computer Graphics
– Visualization and Modeling. Springer-Verlag, New York,
1991.

[9] P. Möller and P. Hansbo. On advancing front mesh generation
in three dimensions. Intl. J. Numer. Meth. Eng., 38:3551–
3569, 1995.

[10] L. R. and P. P. Generation of three-dimensional unstructured
grids by the advancing-front method. AIAA-88-0515, 1988.

[11] H. Samet. Applications of Spatial Data Structures: computer
graphics, image processing and GIS. Addison Wesley, 1990.

[12] K. Shimada. Physically-Based Mesh Generation: Auto-
mated Triangulation of Surfaces and Volumes via Bubble
Packing. PhD thesis, ME Dept., MIT, 1993.

[13] D. Watson. Computing n-dimensional delaunay triangula-
tion with applications to voronoi prototypes. The Computer
Journal, 24(2), 1981.

[14] N. Weatherill. The integrity of geometrical boundaries in two
dimensional Delaunay triangulation. Com. in Appl. Num.
Meth., 6:101–109, 1990.

[15] N. P. Weatherill and O. Hassan. Efficient three-dimensional
delaunay triangulation with automoatic point creation and
imposed boundary constraints. Internation Journal for Nu-
merical Methods in Engineering, 37:2005–2039, 1994.

