Site hosted by Angelfire.com: Build your free website today!

TUTORIAL 7

 

DIFFERENTIATION:  BASIC CONCEPTS & FORMULAE

 

        Reference: JAC: pp. 193 - 213        

 

1.)     Differentiate the following:

 

a.)      y = x 5 + x 6 + 1/x + 1/x 2

b.)     y = 5 x 50 + 4x3 + 3 + 8/x – 7/x4

c.)      y = 2x 4 + 12x 3 – 4x 2 + 7x – 400

d.)     y = 5 x 1/5 – 2x 1/3 + 4/x7

e.)  y = 2x 3 + 6x 2 + 49x – 54

f.)       2xy = 3x 2 – 5x + 4

g.)     3y = 4x 4 +2x 2 – 4x + 4/x – 2

h.)     x2 y = 3x3 – 2x2 + x -1

 

2.)     Find the first-order and second order derivatives for the following

 

a.)      y = x2 – 3x + 2

b.)     y = 4x ½ - 3/x + 7/x2

c.)      y = 7/x + 2/x3 – 41

d.)     y = 9x 5 – 2x 3 + 24/x – 12/x2

e.)      y = ax + b

f.)       y = ax2 + bx + c

 

3.)     Differentiate using the Chain Rule: (JAC pp. 229)

 

a.)      y = (3x 2 – 5x + 2) 4

b.)     y = 1 / (3x + 7)

c.)      y = (1 + x 2 ) ½

d.)     y = (3x –5) 4

e.) y = (x 2 + 3x + 5) 3

 


 

4.)     The Product Rule: (JAC pp. 231)

If y = uv, then dy/dx = u dv/dx + v du/dx

 

        Worked Example:

        Differentiate y = x2 (2x + 3) 2

       

        u =  x2    and   v =  (2x + 3) 2 = 4x2 + 12x + 9 = 4x2 + 12 x 1 + 9 x 0

 

        du/dx = (2) x2 -1 = 2x

        dv/dx =   2 (4x 2-1) + (1) 12 x 1-1 + (0) 9 x 0-1 = 8x + 12 x0 + 0 = 8x + 12

 

        dy/dx = u dv/dx + v du/dx

                     = x2 (8x + 12) + (2x + 3) 2 (2x)

                     = x2 (8x + 12) + 2x (2x + 3) 2

                     = x2 (4) (2x + 3) + 2x (2x + 3) 2

                     = (2x + 3) (4x2 + 2x (2x + 3))

                     = (2x + 3) (4x2 + 4x2 + 6x)

                     = (2x + 3) (8x2 + 6x)

                     = (2x + 3) (2x) (4x + 3)

                = 2x (2x + 3)(4x + 3)

 

Differentiate the following using The Product Rule:

 

a.) y = x  (2x + 1) 2

b.) y = (3x + 2)(6x2 – 2)

c.) y = (2x – 3)(2x – 1)

d.) y = (3x – 8)(5x + 6) 2

e.) y = x2(2x + 1) 3

 

5.)     The Quotient Rule: (JAC pp. 234)

If y = u/v, then dy/dx = ( v du/dx – u dv/dx ) / v2

 

            Worked Example:

            Differentiate: y = x/(x+1)

            u = x and v = x + 1 = x1 + x 0

            du/dx = 1 (x 1-1 ) = 1 (x 0 ) = 1 (1) = 1;    

            dv/dx = 1 (x 1-1) + 0 (x 1-0) = 1 + 0 = 1

 

            Using the quotient rule:

            dy/dx = ( v du/dxu dv/dx ) / v2

                         = [ (x+1) (1) – (x) (1) ]/(x+1) 2

                         = [ x+1 – x ]/(x+1) 2

                         =  1/(x+1) 2

 

           


Differentiate the following using the Quotient Rule:

a.)      y = x 2/(x+4)

b.)     y = (4x 2 + 3)/(2x –1)

c.)      y = (2x + 1)/(4x – 1)

d.)     y = 4x / (x – 1)

e.)      y = x/(1+x)

 

BACK TO INDEX