

 Nintendo Entertainment System Architecture

 version 1.4 [09/09/1996]

 by Marat Fayzullin [fms@freeflight.com]

 WWW: http://www.freeflight.com/fms/

 IRC: RST38h

 The following document describes the workings of Nintendo Entertainment

System videogame console, also known as Famicom in the East (Korea, Japan),

and Dandy in Europe (Russia, etc.). Note that this document is in no way

based on any official Nintendo information and may be incomplete and

incorrect in many places. "Nintendo Entertainment System" and "Famicom" are

registered trademarks of Nintendo.

 I would like to thank following people for their help in obtaining this

information and writing a NES emulator, as well as the moral support from

some of them:

 (sorted alphabetically)

 Pascal Felber Pan of Anthrox John Stiles

 Kawasedo Patrick Lesaard Tink

 Marcel de Kogel Paul Robson Bas Vijfwinkel

 Alex Krasivsky Serge Skorobogatov

 The current version of this file is missing some information, such as

sound hardware. I will add these parts in later releases. If you have any

information on NES, which is not in this manual, feel free to write to

fms@freeflight.com. Your help will be appreciated.

******************************* Contents *******************************

 1. General Architecture

 2. Interrupts

 3. I/O Ports

 4. PPU Memory

 5. Hit/VBlank Bits

 6. Joysticks

 7. Sprites

 8. Memory Mappers

 a) Sequential

 b) Konami

 c) VROM Switch

 d) 5202 Chip

 e) Others

 9. Sound (to be written)

************************* General Architecture *************************

 NES is based on the 6502 CPU, and a custom video controller known as PPU

(Picture Processing Unit). The PPU's video memory is separated from the

main CPU memory and can be read/written via special ports. Cartridges may

contain both ROM appearing in the main CPU address space at $8000-$FFFF,

and VROM or VRAM appearing in the PPU address space at $0000-$1FFF and

containing the Pattern Tables (aka Tile Tables). In smaller cartridges,

which only have 16kB ROM, it takes place at $C000-$FFFF leaving $8000-$BFFF

area unused. Internal NES VRAM is located at addresses $2000-$3FFF in the

PPU memory. Some cartridges also have RAM at $6000-$7FFF, which may or may

not be battery-backed.

CPU Memory Map

--------------------------------------- $10000

 Upper Bank of Cartridge ROM

--------------------------------------- $C000

 Lower Bank of Cartridge ROM

--------------------------------------- $8000

 Cartridge RAM (may be battery-backed)

--------------------------------------- $6000

 Expansion Modules

--------------------------------------- $5000

 Input/Output

--------------------------------------- $2000

 2kB Internal RAM, mirrored 4 times

--------------------------------------- $0000

****************************** Interrupts ******************************

 NES uses non-maskable interrupts (NMIs) generated by PPU in the end of

each frame (so-called VBlank interrupts). Maskable interrupts, or IRQs,

can also be generated by circuitry in a cart, but most carts do not

generate them. The VBlank interrupts can be enabled/disabled by writing

1/0 into 7th bit of $2000. When a VBlank interrupts occur, CPU pushes

return address and the status register on stack, and jumps to the address

stored at location $FFFA (ROM in NES). The interrupt handler is supposed

to finish its execution with RTI command which returns CPU to the main

program execution. More information on the interrupt handling can be found

in a decent book on 6502 CPU.

****************************** I/O ports *******************************

 NES internal I/O ports are mapped into the areas of $2000-$2007 and

$4000-$4017. Some ports' usage is unknown or unclear, and any information

is appreciated.

I/O Ports Map

------+-----+---

$2000 | RW | PPU Control Register 1

 | 0-1 | Name Table to show:

 | |

 | | +-----------+-----------+

 | | | 2 ($2800) | 3 ($2C00) |

 | | +-----------+-----------+

 | | | 0 ($2000) | 1 ($2400) |

 | | +-----------+-----------+

 | |

 | | Remember, though, that because of the mirroring, there are

 | | only 2 real Name Tables, not 4.

 | 2 | Vertical Write, 1 = PPU memory address increments by 32:

 | |

 | | Name Table, VW=0 Name Table, VW=1

 | | +----------------+ +----------------+

 | | |----> write | | | write |

 | | | | | V |

 | |

 | 3 | Sprite Pattern Table address, 1 = $1000, 0 = $0000

 | 4 | Screen Pattern Table address, 1 = $1000, 0 = $0000

 | 5 | Sprite Size, 1 = 8x16, 0 = 8x8

 | 6 | Hit Switch, 1 = generate interrupts on Hit (incorrect ???)

 | 7 | VBlank Switch, 1 = generate interrupts on VBlank

------+-----+---

$2001 | RW | PPU Control Register 2

 | 0 | Unknown (???)

 | 1 | Image Mask, 0 = don't show left 8 columns of the screen

 | 2 | Sprite Mask, 0 = don't show sprites in left 8 columns

 | 3 | Screen Switch, 1 = show picture, 0 = blank screen

 | 4 | Sprites Switch, 1 = show sprites, 0 = hide sprites

 | 5-7 | Unknown (???)

------+-----+---

$2002 | R | PPU Status Register

 | 0-5 | Unknown (???)

 | 6 | Hit Flag, 1 = PPU refresh has hit sprite #0

 | | This flag resets to 0 when VBlank starts, or CPU reads $2002

 | | (see "Hit/VBlank Bits").

 | 7 | VBlank Flag, 1 = PPU is generating a Vertical Blanking Impulse

 | | This flag resets to 0 when VBlank ends, or CPU reads $2002

 | | (see "Hit/VBlank Bits").

------+-----+---

$2003 | W | Sprite Memory Address

 | | Used to set the address in the 256-byte Sprite Memory to be

 | | accessed via $2004. This address will increment by 1 after

 | | each access to $2004. The Sprite Memory contains coordinates,

 | | colors, and other attributes of the sprites (see "Sprites").

------+-----+---

$2004 | RW | Sprite Memory Data

 | | Used to read/write the Sprite Memory. The address is set via

 | | $2003 and increments after each access. The Sprite Memory

 | | contains coordinates, colors, and other attributes of the

 | | sprites (see "Sprites").

------+-----+---

$2005 | W | Background Scroll

 | | There are two scroll registers, vertical and horizontal,

 | | which are both written via this port. The first value written

 | | will go into the Vertical Scroll Register (unless it is >239,

 | | then it will be ignored). The second value will appear in the

 | | Horizontal Scroll Register. The Name Tables are assumed to be

 | | arranged in the following way:

 | |

 | | +-----------+-----------+

 | | | 2 ($2800) | 3 ($2C00) |

 | | +-----------+-----------+

 | | | 0 ($2000) | 1 ($2400) |

 | | +-----------+-----------+

 | |

 | | When scrolled, the picture may span over several Name Tables.

 | | Remember, though, that because of the mirroring, there are

 | | only 2 real Name Tables, not 4.

------+-----+---

$2006 | | PPU Memory Address

 | | See "PPU Memory".

------+-----+---

$2007 | | PPU Memory Data

 | | See "PPU Memory".

------+-----+---

$4000-$4013 | Sound Registers

 | See "Sound".

------+-----+---

$4014 | W | DMA Access to the Sprite Memory

 | | Writing a value N into this port, causes an area of CPU memory

 | | at address $100*N to be transferred into the Sprite Memory.

------+-----+---

$4015 | W | Sound Switch

 | 0 | Channel 1, 1 = enable sound

 | 1 | Channel 2, 1 = enable sound

 | 2 | Channel 3, 1 = enable sound

 | 3 | Channel 4, 1 = enable sound

 | 4 | Channel 5, 1 = enable sound

 | 5-7 | Unused (???)

------+-----+---

$4016 | RW | Joystick 1 + Strobe

 | 0 | Joystick 1 data

 | 1 | Joystick 1 presence, 0 = connected

 | 2-5 | Unused, set to 0 (???)

 | 6-7 | Unknown, set to 10 (???)

 | | See "Joysticks".

------+-----+---

$4017 | R | Joystick 2

 | 0 | Joystick 2 data

 | 1 | Joystick 2 presence, 0 = connected

 | 2-5 | Unused, set to 0 (???)

 | 6-7 | Unknown, set to 10 (???)

 | | See "Joysticks".

------+-----+---

****************************** PPU Memory ******************************

 In a real NES, reading/writing PPU memory should only be attempted

during VBlank period. Many smaller ROMs have read-only memory (VROM) for

the Pattern Tables. In this case, you won't be able to write into this

memory. The $3F00 and $3F10 locations in VRAM mirror each other (i.e. it

is the same memory cell) and define the background color of the picture.

 Writing to PPU memory:

 a) Write upper address byte into $2006

 b) Write lower address byte into $2006

 c) Write data into $2007. After each write, the address will

 increment either by 1 (bit 2 of $2000 is 0) or by 32 (bit 2 of

 $2000 is 1).

 Reading from PPU memory:

 a) Write upper address byte into $2006

 b) Write lower address byte into $2006

 c) Read data from $2007. The first byte read from $2007 will be

 invalid. Then, the address will increment by 1 after each

 read.

 Name Table contains tile numbers organized into 32 rows of 32 bytes

each. Tiles are 8x8 pixels each. Therefore, the whole Name Table is 32x32

tiles or 256x256 pixels. In the NTSC version of NES, upper and lower 16

pixels are not shown, thus, the screen becomes 256x224 pixels. In the PAL

version of NES, upper and lower 8 pixels are not show, thus, the screen

becomes 256x240 pixels.

 Pattern Table contains tile images in the following format:

 Character Colors Contents of Pattern Table

 ...o.... 00010000 00010000 $10 +-> 00000000 $00

 ..O.O... 00202000 00000000 $00 | 00101000 $28

 .0...0.. 03000300 01000100 $44 | 01000100 $44

 O.....O. 20000020 00000000 $00 | 10000010 $82

 ooooooo. -> 11111110 11111110 $FE | 00000000 $00

 O.....O. 20000020 00000000 $00 | 10000010 $82

 0.....0. 30000030 10000010 $82 | 10000010 $82

 00000000 00000000 $00 | 00000000 $00

 +---------+

 Note that only two bits for each pixel of a character are stored in the

Pattern Table. Other two are taken from the Attribute Table. Thus, the total

number of simultaneous colors on the NES screen is 16.

 Each byte in the Attribute Table represents a 4x4 group of tiles on the

screen, which makes an 8x8 attribute table. Each 4x4 tile group is

subdivided into four 2x2 squares as follows:

 (0,0) (1,0) 0| (2,0) (3,0) 1

 (0,1) (1,1) | (2,1) (3,1)

 --------------+----------------

 (0,2) (1,2) 2| (2,2) (3,2) 3

 (0,3) (1,3) | (2,3) (3,3)

 The attribute byte contains upper two bits of the color number for each

2x2 square (the lower two bits are stored in the Pattern Table):

 Bits Function Tiles

 --

 7,6 Upper color bits for square 3 (2,2),(3,2),(2,3),(3,3)

 5,4 Upper color bits for square 2 (0,2),(1,2),(0,3),(1,3)

 3,2 Upper color bits for square 1 (2,0),(3,0),(2,1),(3,1)

 1,0 Upper color bits for square 0 (0,0),(1,0),(0,1),(1,1)

 There are two 16-byte Palette Tables: the one at $3F00, used for the

picture, and another one at $3F10, containing the sprite palette. The

$3F00 and $3F10 locations in VRAM mirror each other (i.e. it is the same

memory cell) and define the background color of the picture.

 There is only enough VRAM for 2 Name Tables and Attribute Tables. Two

others are going to be mirrors of the first two, i.e. exact copies of them.

Which pages are mirrored depends on the cartridge circuitry. With vertical

mirroring, tables 2 and 3 are the mirrors of pages 0 and 1 appropriately.

With horizontal mirroring, pages 1 and 3 are the mirrors of pages 0 and 2

appropriately.

PPU Memory Map

--------------------------------------- $4000

 Empty

--------------------------------------- $3F20

 Sprite Palette

--------------------------------------- $3F10

 Image Palette

--------------------------------------- $3F00

 Empty

--------------------------------------- $3000

 Attribute Table 3

--------------------------------------- $2FC0

 Name Table 3 (32x25 tiles)

--------------------------------------- $2C00

 Attribute Table 2

--------------------------------------- $2BC0

 Name Table 2 (32x25 tiles)

--------------------------------------- $2800

 Attribute Table 1

--------------------------------------- $27C0

 Name Table 1 (32x25 tiles)

--------------------------------------- $2400

 Attribute Table 0

--------------------------------------- $23C0

 Name Table 0 (32x25 tiles)

--------------------------------------- $2000

 Pattern Table 1 (256x2x8, may be VROM)

--------------------------------------- $1000

 Pattern Table 0 (256x2x8, may be VROM)

--------------------------------------- $0000

*************************** Hit/VBlank Bits ****************************

 The VBlank flag is contained in the 7th bit of read-only location $2002.

It indicates whether PPU is scanning the screen, or generating a vertical

blanking impulse. It is set in the end of each frame (scanline 232), and

stays on until the next screen refresh starts from the scanline 8. The

program can reset this bit prematurely by reading from $2002.

 The Hit flag is contained in the 6th bit of read-only location $2002.

It goes to 1 when PPU starts refreshing the first scanline where sprite#0

is located. For example, if sprite#0's Y coordinate is 34, the Hit flag

will be set in scanline 34. The Hit flag is reset when vertical blanking

impulse starts. The program can reset this bit prematurely by reading from

$2002.

******************************* Joysticks ******************************

 There are two joysticks which are accessed via locations $4016 and

$4017. To reset joysticks, write first 1, then 0 into $4016. This way, you

will generate a strobe in the joysticks' circuitry. Then, read either from

$4016 (for joystick 0) or from $4017 (for joystick 1). Each read will

give you the status of a single button in the 0th bit (1 if pressed, 0

otherwise):

Read # | 1 2 3 4 5 6 7 8

-------+---

Button | A B SELECT START UP DOWN LEFT RIGHT

 Bit 1 indicates whether joystick is connected to the port or not. It is

set to 0 if the joystick is connected, 1 otherwise. Bits 6 and 7 of

$4016/$4017 also seem to have some significance, which is not clear yet.

The rest of bits is set to zeroes. Some games expect to get *exactly* $41

from $4016/$4017, if a button is pressed, which has to be taken into

account.

******************************* Sprites ********************************

 There are 64 sprites, which can be either 8x8 or 8x16 pixels. Sprites

patterns are stored in on of the Pattern Tables in the PPU Memory. Sprite

attributes are stored in the Sprite Memory of 256 bytes, which is not a

part of neither CPU nor PPU address space. The entire contents of Sprite

Memory can be written via DMA transfer using location $4014 (see above).

Sprite Memory can also be accessed byte-by-byte by putting the starting

address into $2003 and then writing/reading $2004 (the address will be

incremented after each access). The format of sprite attributes is as

follows:

Sprite Attribute RAM:

| Sprite#0 | Sprite#1 | ... | Sprite#62 | Sprite#63 |

 | |

 +---- 4 bytes: 0: Y position of the left-top corner - 1

 1: Sprite pattern number

 2: Color and attributes:

 bits 1,0: two upper bits of color

 bits 2,3,4: Unknown (???)

 bit 5: if 1, display sprite behind background

 bit 6: if 1, flip sprite horizontally

 bit 7: if 1, flip sprite vertically

 3: X position of the left-top corner

Sprite patterns are fetched in the exactly same way as the tile patterns

for the background picture. The only difference occurs in the 16x8

sprites: the top half of the sprite is taken from the Sprite Pattern Table

set in the $2000 port, while the bottom part is taken from the same

location of the alternative Pattern Table. Therefore, if PPU is displaying

a 16x8 sprite, and the Sprite Pattern Table is set to $1000, the bottom

half of this sprite will be taken out of the $0000 Pattern Table, and vice

versa.

**************************** Memory Mappers ****************************

 There are many diffirent memory mappers (aka MMCs) used in the NES

cartridges. They are used to switch ROM and VROM pages, and do some other

tasks. I will only describe the MMCs I'm familiar with. Any new

information on these and other MMCs is highly appreciated. The MMC

numbers are given in terms of the .NES file field "Mapper Type".

1. Mapper #1, Sequential

 This is a sequential mapper used in many 256kB cartridges, such as

Bomberman 2, Destiny Of The Emperor, Megaman 2, Airwolf, Operation Wolf,

Castlevania 2, Silk Worm, Yoshi, Break Thru. It may be used to switch ROM

and VROM. If there is no VROM, 8kB of VRAM is present at $0000. In some

cases (mostly RPG games) such cartridges also contain battery-backed RAM

at $6000-$7FFF. The mapper has four 5bit registers, which are accessed via

following addresses:

Register Address Range Function

0 $8000-$9FFF Mirroring and VROM Page Size select

 The 0th bit of this register selects the mirroring type (1 for

 horizontal, 0 for vertical). The 4th bit selects the size of

 VROM pages. When it is 1, two 4kB VROM pages can be switched

 independently at $0000 and $1000. Otherwise, there is a single

 8kB VROM page at $0000.

1 $A000-$BFFF VROM page select

 This register sets either 8kB or 4kB VROM page at $0000,

 depending on the page size selected via register 0.

2 $C000-$DFFF Second VROM page select for 4kB pages

 If 4kB VROM pages selected via register 0, this register sets

 the VROM page at $1000. Otherwise, its value is ignored.

3 $E000-$FFFF ROM page select

 This register sets 16kB ROM page at $8000. The page at $C000 is

 always hardwired to the last ROM page in the cartridge. The

 cartridge starts with page 0 at $8000.

 In order to write to a mapper register, write $80 into any of the

locations first. This will reset the mapper. Then write the value bit by

bit into an appropriate address range. For example, the following assembly

code will write $0C into register 3:

 lda #$80 ; Resetting mapper

 sta $8000 ;

 lda #$0C ; This is our value

 sta $EFD9 ; Writing bit 0

 lsr a ; Shifting

 sta $EFD9 ; Writing bit 1

 lsr a ; Shifting

 sta $EFD9 ; Writing bit 2

 lsr a ; Shifting

 sta $EFD9 ; Writing bit 3

 lsr a ; Shifting

 sta $EFD9 ; Writing bit 4

2. Mapper #2, Konami

 This is a quite simple mapper used in most Konami (Life Force,

Castlevania, Metal Gear) and some other cartridges. It only switches the

ROM. All cartridges with this mapper have 8kB VRAM at $0000 (i.e. no

VROM). The mapper has a single 8bit register which can be written via

locations $8000-$FFFF. It contains a number of 16kB ROM page at $8000.

The page at $C000 is always hardwired to the last ROM page in the

cartridge. The cartridge starts with page 0 at $8000.

 There is one more thing to note about this mapper: although any address

in the $8000-$FFFF range can be used to access the mapper, most games

prefer to use the address with the last digit equal to the value they

write out. Thus, $07 can be written to $9FF7, $05 to $9FF5, and so forth.

The reason for this is unknown.

3. Mapper #3, VROM Switch

 Mapper #3, also known as a VROM switch, is used in the Goonies series

and many Japanese-only games. It only allows you to switch 8kB pages of

VROM. The ROM is either 16kB or 32kB and is not paged. The mapper has a

single 8bit register which can be written via locations $8000-$FFFF. It

contains a number of 8kB VROM page at $0000.

 As with mapper #2, many games use locations with the last digit equal to

the value being written. I do not know why.

4. Mapper #4, 5202 Chip (???)

 This mapper (or should I say 'an expansion chip'?) is used in many

recent cartridges, such as Batman Returns, Super Contra, Vindicators,

Silver Surfer, etc. It is an extremely complicated device, which is able

to generate its own interrupts via IRQ line, and has a set of commands to

switch ROM and VROM. VROM pages are 1kB, ROM pages appear to be 8kB. I do

not completely understand how this mapper works, so any information is

appreciated.

 The chip is controlled via following locations:

Address Function

$8000 A command number (0-7) is written here. Also, write to this

 register appears to reset the change made by a write into $E000.

$8001 An value for command is written here.

$A000 The 0th bit controls mirroring (1 = horizontal mirroring).

$A001 Same as $8001 (???)

$C000 Unknown

$C001 Unknown

$E000 The 5th bit appears to swap memory at $8000-$8FFF and

 $A000-$AFFF, when set to 1.

$E001 Unknown

 In order to use the mapper, you should first write a command number

into $8000, and then a value (page number) into $8001. Following commands

exist:

Cmd Function

 0 Select 2 consequent 1kB VROM pages at $0000. The 0th bit of a value

 written into $8001 does not matter, i.e. 5 will always select pages

 4 and 5.

 1 Select 2 consequent 1kB VROM pages at $0800. The 0th bit of a value

 written into $8001 does not matter, i.e. 5 will always select pages

 4 and 5.

 2 Select a 1kB VROM page at $1000.

 3 Select a 1kB VROM page at $1400.

 4 Select a 1kB VROM page at $1800.

 5 Select a 1kB VROM page at $1C00.

 6 Select a 8kB ROM page at $8000. The initial value seems to be 0.

 7 Select a 8kB ROM page at $A000. The initial value seems to be 1.

 Note that the ROM pages at $C000 and $E000 are hardwired to the last

pages of the ROM, and can not be switched (they can be swapped via

$E000 though).

5. Other mappers

 There are several other mappers, some of them very sophisticated. iNES

partially supports them, but as this support either doesn't work

correctly, or the mappers are uncommon (such as 100-in-1 cartridge mapper,

I don't cover them here.

******************************** Sound *********************************

 To be written.

Marat Fayzullin

