
Distributed Systems Lecture 3 1

Today’s Topics - Chapter 15

• Replication 15.1

• Group Communications 15.2

• Fault-tolerant Services 15.3

All figures are in the book “Distributed Systems Concepts and Design” by Couloris, Dollimore and

Kindberg



Distributed Systems Lecture 3 2

Replication

Motivation: to enhance services.

• Improve its performance.

• Increase its availability.

• Make it fault-tolerant.



Distributed Systems Lecture 3 3

Replication - Inhance the performance

• Common: Caching data at clients and servers enhance

performance.

• E.g. To share the load, several web servers bind their IP

addresses to the same DNS name, say www.aWebSite.org and the

servers are selected in turn.

• Replication of read-only data is simple, but replication of

changing data incurs overheads.



Distributed Systems Lecture 3 4

Replication - Increase availability

• Users want that the service always is accessible within resonable

response time.

• Suppose there are n servers which each has an independent

probability p of failing.

• Availability of an object stored at each of these servers is:

1 − pn

• For example, a system of 3 servers each has probability 10% of

failure, then availability is 1 − 0.13 = 0.999 = 99, 9%.



Distributed Systems Lecture 3 5

Byzantine Faults

Two types of failures:

• Failure by omission: The system stops working, it fails to

provide some service. You know that the system does not work

because it isn’t responding.

• Byzantine Failure: The system starts producing incorrect

output. It is not always easy to distinguish between the system

failing and it correctly running.



Distributed Systems Lecture 3 6

Fault-tolerant service

• We want services to behave correctly.

– Highly available data is not necessarily strictly correct data.

– Data may be out of date; network partitions may induce

conflicts that need to be resolved.

• A faul-tolerant service always guarantees correct behaviour

despite a number and type of faults.

– Correctness concerns the freshness of data and the effects of

the client’s operations upon data.



Distributed Systems Lecture 3 7

Fault-tolerant service (cont.)

• The same technique used for high availability - replicating data

and functionality - is also used to achieve fault tolerance.

– If f of f+1 servers crash then 1 remains to supply the service.

– If f of 2f+1 servers have Byzantine faults then they can

supply a correct service.



Distributed Systems Lecture 3 8

Requirements for Replicated Data

• Replication transparency clients see logical objects (not several

physical copies).

– Clients access one logical item and receive a single result.

• Consistency specified to suit the application.

– Consisntency - the operations performed upon a collection of

replicated objects produce results that meet the specification

of correctness for those objects.

– E.g. when a user of a diary disconnects, their local copy may

be inconsistent with the others and will need to be reconciled

when they connect again. But connected clients using

different copies should get consistent results.



Distributed Systems Lecture 3 9

System Model

• Each logical object is implemented by a collection of physical

copies called replicas.

– The replicas are not necessarily consistent all the time.

• We assume an:

– asynchronous system,

– processes fail only by crashing,

– network partitions may not occur.



Distributed Systems Lecture 3 10

System Model - Replica Managers

• Replicas are held by distinct RM. RM contains the replicas on a

given computer and perform operations on them directly.

• RMs apply operations to replicas recoverably i.e. they do not

leave inconsistent results if they crash.

• Objects are copied at all RMs unless we state otherwise.

• Static systems are based on a fixed set of RMs. In a dynamic

system RMs may join or leave (e.g. when they crash).



Distributed Systems Lecture 3 11

State Machine Approach

A RM can be a state machine with the following properties:

• Its state is a deterministic function of its initial state and the

operations applied.

• All replicas start identical and carry out the same operations.

• Its operations must not be affected by clock readings etc.



Distributed Systems Lecture 3 12

Basic Architectural Model

• Clients see a service that gives them access to logical objects,

which are in fact replicated at the RMs

• Clients request operations: those without updates are called

read-only requests the others are called update requests

• Clients request are handled by front ends. A front end makes

replication transparent.



Distributed Systems Lecture 3 13



Distributed Systems Lecture 3 14

Five Phases in performing a request

• Issue Request: The Front End either:

– sends the request to a single RM which passes it on to all the

others.

– Multicasts the message to all RM (in the state machine

approach).

• Coordination: The RM apply the request; and decide on its

ordering relative to other request decide whether to apply the

request. (according to FIFO, causal or total ordering)

• Execution: The RMs execute the request (often tentatively).

• Agreement: The RMs agree on the effect of the request.



Distributed Systems Lecture 3 15

Five Phases Continued

• Response: One or more RMs reply to the FE for:

– for high availability the fastest response is delivered.

– to tolerate Byzantine faults, take a vote.



Distributed Systems Lecture 3 16

Ordering

• Fifo Ordering: If a front end issues request r and then request r′

then any correct RM that handles r′ handles r before it.

• Causal Ordering: If the issue of requestr happend-before the

issue of request r′, then any correct RM that handles r′ handlesr

before it.

• Total Ordering: If a correct RM handles r before r′, then any

correct RM that handles r′ handles r before it.

Total Order is too strong. Causal Ordering is desirable, FIFO

ordering often implemented.



Distributed Systems Lecture 3 17

Group Communication

• The basic idea is that we have a group of processes which

participate in the replica.

• If the processes are fixed and no process fails then there is no

problem.

• But if we have a number of processes that can join/leave or fail

we have to keep track of who belongs to the group.

• The problem is made more complicated, because the might be

messages in transit while processes join or leave.



Distributed Systems Lecture 3 18

Role of a group membership service

• Provide an interface for group membership changes.

• Implementation of a failure detector.

• Notifying members of group membership changes: The services

notifies the group’s members when a process is added, or when a

process is excluded.

• Performing group address expansion.



Distributed Systems Lecture 3 19



Distributed Systems Lecture 3 20

View Delivery

• One way of managing all this is with the idea of a view.

• A full group membership service maintains group views, which

are lists of the current group members.

• The group membership management delivers a series of views to

each process.

• We require some consistency requirements with delivery ordering

of view notifications w.r.t. the delivery of multicast messages.



Distributed Systems Lecture 3 21

View Synchronous group Communication

• Agreement: In any given view, correct processes deliver the same

set of messages.

• Integrity: If a correct process delivers a message, then it it will

not deliver that message again.

• Validity: Correct process always deliver the messages that they

send. If the system fails to deliver a message to any process q,

then in the next view q will not be there.

It is essentially a consistency requirement that messages delivered

from certain views arrive all before or all after a view change.



Distributed Systems Lecture 3 22

.



Distributed Systems Lecture 3 23

Fault-tolerant Services

• If data is distributed and faults can occur some care has to be

taken so that things don’t get inconsistent.

• A system is correct if a user can see no difference between one

copy and multiple copies.



Distributed Systems Lecture 3 24

Bank Account Example

• Consider a naive replication system, in which two RMs at

computers A and B each maintain replicas of two bank accounts

x and y.

• Clients read and update the accounts at their local RM and the

other one in case of failure.

• Replica managers propagate updates to one another in the

background after responding to each client.



Distributed Systems Lecture 3 25

Bank Account Example

• Client 1 updates the balance of x at its local replica manager B

to be 1 Euro and then attempts to update y’s balance to be 2

but discovers that B has failed, so Client 1 updates it A instead.

• But Client 2 reads the balance of y to be 2 at A but since B

crashed the setting the balance of x did not get through.



Distributed Systems Lecture 3 26

Bank Account Example

Client 1: Client 2:

setBalanceB(x, 1)

setBalanceA(y, 2)

getBalanceA(y) → 2

getBalanceA(x) → 0



Distributed Systems Lecture 3 27

Consistency

Basic idea.

• We would like some sort of temporal consistency, if s happens

before t then on all copies s happens before t. But in the

presence of network delays this is not possible.

• So various weaker notions of consistency are introduced.

• One common criterion is sequential consistency. A sequence of

operations all allowed there is an interleaving of the individual

sequences that produces that interleaving.



Distributed Systems Lecture 3 28

Passive Replication for fault tolerance

• Passive model. Single replica manager acts as a primary and one

or more as secondary replica managers - backups.

• Front ends communicate only with the primary replica manager.

• The primary replica mangager executes the operations and sends

copies of updated data to backups.

• If primary replica manager fails, one of the backups is promoted

to primary.



Distributed Systems Lecture 3 29

.



Distributed Systems Lecture 3 30

Active Replication for fault tolerance

• Active model. The replica managers are state machines that play

equivalent roles.

• Front end sends the same message to every replica manager in

the group.

• All replica managers process the request identically and reply.

• If a replica manager fails the other ones still respond in the

normal way.



Distributed Systems Lecture 3 31


