o

’//“

AMIGA Collection

£
1

COMPLETE PROGRAMMING PACKAGE!
Take some tips from Populous |l creators Bullfrog
as they tutor you to games-writing prowess wit
this fully-featured machine code package. Go on,

beat the softies at their own gamesl

® A 500 Plus Compatible ® 1Mb Recommended @

Your Turn! Part 5

HOW TO PROGRAM

If you've been following the Bullfrog's program-
ming tutorial over the last few issves, your game
will be ready for the finishing touches. Read on as
the boys (pictured above) explain what to do...

How to program your own games in assembler

Welcome to the fifth and final part of our
series teaching you how to program games
using the professional techniques of the
Bulifrog programming team.

This month, Scott Johnston explains
how to add some finishing touches and
tweaks to the game, and how you

could take it further when it comes to
starting out on your own games.

This is the last issue in our assembly program-
ming series, and since the demo could almost
be considered a ‘proper’ game, this month we
will concentrate on enhancements — some sim-
ple. and others not quite so simple.

SOME SIMPLE CHANGES

The following changes are really tweaks to the
equates we set up. The main problem with the
game is the massive momentum we have on
our guy. Way too much. What you can do is
alter the variables:

MAX_SPEED, used to increase or
decrease the speed at which you move.
ACCEL, the amount your man

changes speed by when you move the joystick.

SLOW_DOWN, the speed at which you slow
down when not moving the joystick.

JUMP, how far your man can jump,
works in relation to GRAVITY.

GRAVITY, how quickly you will fall
back to carth.
MAX_FALL, how far you can fall before

suffering from a case of terminal death.
NO_LIVES, the actual number of lives
that you have.

If you think that the collision is a bit dodgy,
change the man’s width, or the bad guy’s
width. To make it harder to die, change
MAN_WIDTH to a smaller number: the
smaller, the harder for you to touch something,

Continued overleaf

:
%

JANUARY 1993



LVYWHOA VOINV

€661 AAVNNYT

HOW TO PROGRAM

If you find it a bit difficult to stand on the plat-
forms you can change the size of your feet:
reduce the left foot, and increase the right foot.
This will make it easier for you to stand on the
platforms, but might have the strange visual
effect of standing in mid-air.

If you run the version given away on this
month’s disk, you will see that a simple title
screen is present. This was created with the
code inside the routine intro.s, and was
called at the start of display.s. Youcando
what you will with this code.

There is also a very simple ‘Game over’
display. At present only the highest score is
coded. It will be quite a good exercise for you
to change the routine that is present to that of a
high-score table with names for the places.

Another thing for you to do is to try a code
a delay. If you press the fire button for too
long when you start, the first thing you witl do
is jump into the air. Similarly, when you have
finished playing if you press fire at the end
screen there is a chance of you going right past
the introduction screen!

Collection Bonus

You may have noticed that the ankhs have a
state defined tor them: change the code so that
it you pick up an ankh which has a different
state, then you get double score or something
similar. The graphics for a flashing ankh are
also included in the tile for this month’s pro-
gram listing, so give that a go,

Screen display

This is the slowest part of the program at pre-
sent. It is drawn forwards at present: the data
is stored consecutively, and is copied from
memory to screen. Try storing the bytes as
blocks of 48 (the amount we pick up inside the
loop) but store them backwards. The bottom
48 bytes of the screen arc stored as the Ist
forty eight bytes of memory, so we can change
the (al) to a —(al) and hence we would not
nced the lea command to adjust the address in
al. The quickest way would be to use the blit-
ter chip, but it's too complex to explain here.

Speed

At present the whole screen is redrawn every
turn. This is a large waste of time, in that there
are only four or so sprites being updated at a
time. If you change the system to a redraw,
you will need to store a copy of the back-
ground that the sprites are about to be drawn
onto. Then at the start of the turn, redraw the

USE YOUR OWN GRAPHICS

Well, we finally got the DPaint-to-Sprite
Convert program from the Bullfrogs, and
just to make it as available to people as
possible, it has been included on both
Coverdisks — so if one has a read/write
error, it can still be used from the other
Coverdisk. Incidentally, if any of your
Coverdisks don’t work, you shouild send
them back to the address at the bottom of
the “Backing Up Your Coverdisk” bit on
Page 10.

The Convert program is a handy utility
for taking pictures done with a paint pack-
age like Deluxe Paint and transferring them
into raw binary that can be included from
within a Devpac listing using the Incbin
(Include Binary) command. There are many
examples of this function embedded in the
demo code, so have a good ponder to see
just how it’s done. Convert can handle
whole screens or those split up into a grid
so you can use it for your background
screens as well as your sprites.

Getting at it is not too much of a chore,
but is not immedietely obvious. What you
have to do is boot either Coverdisk (insert
it into a freshly reset Amiga) and hoid
down the Ctrl and D keys. The startup-
sequence will abort, and you will be left
with a little CLI or Shell prompt to type at.
Just type this and press the Return key
(always press Return after typing Shell or
CLI commands):

Convert
The program will run, and ask you for four

answers. The first thing it needs to know is
the path and filename of the picture that

you want to change into binary code. Just
typing in the name will not be enough — for
instance, if you had a picture called
Mypic.IFF on a disk called Empty, you
would type in:

Empty:Mypic.IFF

Next you have to type the path and name of
the data file that the Convert program pro-
duces. So if you want to put the binary file
onto a disk called Devpac2, in a directory
called Data, with a name of Mydata.BIN,
you would type something like

Devpac2:Data/Mydata.BIN

The penultimate thing you have to type is
the height of the graphics in pixels. If your
sprites are, say, 32 pixels high, then type
32. If you want to do a whole screen (200 or
256 pixels high) just type the number.
Don’t forget to press Return.

Then type the width of each pixel block
— again, the smaller the width, the bigger
the number of blocks that the graphics will
end up in. Check out the illustration for a
couple more insights.

Please do not think that Convert is the
only program that can get your graphics
into raw code. There are many similar pro-
grams available, many of which are used
by Public Domain coding groups like
Kefrens, Rebels, LSD and many more.
Some of them are better than this convert
program (Kefren's Metallion Utilities are
especially good, if incompatible with
Workbench 2) and some aren’t, but they all
do the same job.

Here it is - the final
Bulifrog demo game,
running and jumping
with collision detec-
tion, a sound track ond
a scoring system.

background, and then draw the new sprite
positions. You should be able to get the system
running at a 50th of a second very easily with
this system.

Preshifted graphics

If this scems like too much work for you, then
try using preshifted sprites. This is basically
16 copies of all the graphics, one at each pos-
sible shift position. These pre-shifted sprites
are very quick to draw but take up over sixteen
times the memory. Even with the limited
graphics it will still involve a lot of work.

Organised palette

Having the palette in a specific order has some
advantages. For instance, the font is an cxam-
ple of this, as is the bouncing logo, both are
only drawn into a single plane.

There are of course loads of other little tricks
that you could do to speed up this program, for
example place all the drawing routines into the
blitter. I am not going to tell you how to do all
this for various reasons.

For starters, we do have to have some trade
secrets! On top of that, they're mostly just lit-
tle fixes and shortcuts we discovered when
trying to solve a particular problem.

All the same, we think you've got enough
to be going on with. This series should at any
rate get you started in 68000 programming —
the rest is up to you! AF)

GETTING AT THE CODE

As usual, the code is not in a usable form straight from the
Coverdisk — but it's really easy to get it onto your Devpac disk.
Incidentally, many readers get worried that they need every single
tutorial. This isn’t true. So long as you have a copy of the Devpac
disk from Amiga Format issue 39, you can use any of the demo
code on its own.

Anyway, to get the code on to your disk all you have to do is
swtich on your Amiga and load Workbench. Once the drive light
has gone out and you are left at the Workbench screen, pop in the
Prodata disk and double-click on its icon. You will see an icon
labelled Install_Bullfrog_Files. Double-click on this, and insert the
Devpac2 disk when the machine asks for it. You shouldn’t have to
swap disks more than once or twice at the very most (though this
depends on your Workbench version).

Some people have asked how they Install the files onto a blank
disk, rather than the actual Devpac2 disk. The easiest way to do
this is to format a blank disk, and call it Devpac2. Go through the
above procedure, and instead of the real Devpac2 disk, put your
blank in. Then rename the disk to whatever you want. Simple eh!

OVER TO YOU

There has been a tremendous response to the Bullfrog program-
ming series, yet this is the end of it. However, everybody wants
more code! More examples, more tutorials, more techniques, more
tricks, more things to avoid. So we are going to continue printing
material on machine code and putting source code on the
Coverdisk — provided we keep receiving suitable material.

There are two ways in which you can help. The first is by writ-
ing in to us and asking for whatever kind of stuff you want to see —
we have a good idea of the sorts of routines and demos you want,
but the more requests we get for a particular subject, the more
chance we’ll cover it.

The other way you can help is to send in suitable material —
source, examples, questions and answers. Again, we already have
some material to keep the series going — but we need more all the
time. Programming was the subject which most people wanted to
see more of in the magazine when we asked six months ago, so if
you still want to see more, please help us. Send in your requests
and submissions to; Devpac Continued, Amiga Format, 30
Monmouth St, Bath BA1 2BW, UK.




