, R
ah ~RAEE o TR
=5 - ;) QL7 e
o, U Ak R i
a iy LR
T
i i
W
' LUl) T
ol oo
ARTPT 7Y P
) ;
Rl Ll ibare . -
== = CET
A
| (s e Rt
11 LT
" e
LT Y
i i Ty RS et
3 R T s e R =S Ty 1 Ly] ks
o - = ERESir e -
i LB S e .
o | T ; iy P
= i 1 LRI e T
¥ I - - 11} Wiy,
. i o 3 ==t
LT 1 T 1oy o1t
15 4 o

pac 2.

AEBDERE PEA .
sembly PG

om HiSoft

E b
L]

T B AN AR AR

tll_xxlﬁ'i.;..--.-.. ol i
rllllr-lr_.l.a-"p.l.-.--... - %= +4m = 0= v
- = S P P o £ O

m Sy

s
o i

b el B
T E TR

b

COMPLETE PROGRAMMING PACKAGE!
Take some tips from Populous Il creators Bullfrog
as they tutor you to games-writing prowess with

this fully-featured machine code package. Go on,
beat the softies at their own games!

NoO.7 RRP £40

Dev

HOW TO PROGRAM

The Bullfrogs” coding methods aim to make life as
easy as possible. And if you’ve been following
this series you’ll know just how easy it is to cre-
ate your own game by following their advice.

Welcome to the fourth part of our series
teaching you how to program top-class
games using the professional techniques of
the Bullfrog programming team. And for
this months tutorial Scott Johnston
shows you how to write collision routines
for the baddies — no more walking through
trouble folks. He also offers a spot of expert
advice on how to design and add some
extra levels to your game...

WELCOME BACK. Run the demo and you
will notice several things. There is a horrible
SoundTracker routine playing in the back-
ground — thanks to Kevin for that.

You can also now walk around the four
levels, and on completion of all four you will
go back to the start. (You can add extra levels
in yourself, if you’re daring. A little more
advice on that later.)

You also have three headless Populous 2
men wandering around the landscape. You can
run right through them at present, so you need
not worry too much about them when you’re
playing the game.

On to the task for this month. You are now
going to write the collision routine for the bad-
dies, the headless Populous peeps. If you like,

How to program your own games in assembler

you can try writing it before you look at the
routine below.

You have to keep in mind that the hero’s x
and y details are stored as a scaled value four
times the size of the true screen x, y. You must
also keep in mind the fact that your man has a
set width, as have the bad guys. In fact you

can use the following equates to control the
collision size:

MAN WIDTH How wide 1s vyour
man
MAN_HETIGHT How tall 1s vour
man
BAD _LEFT WIDTH Where the left

side of the bad guy starts.
Continued overleaf

Made by unregistered jpg2pdf 2.4

et T B L | - 2T S S -~

it Wil W & S W L

HOW TO PROGRAM

BAD_RIGHT WIDTH Where the
right hand side of the bad guy 1S

BAD TOP_ HEIGHT Where the
top of our bad guy starts

BAD BOTTOM HEIGHT The bot =
tom of the bad guy 1s found here.

The general routine is based on the Ankh colli-
sion routine and is shown below. Sorry that it
18 so long. You can leave out the comments if
you want, but when you come back to it in the
future 1t will be harder to understand. This rou-
tine should be placed in file move.s between

Here’s what you’ve
got so far. Notice the
baddies now appear at
the bottom of the
screen. They may look
familiar, which is no
surprise because
they’re straight out of
Populous 2.

"1lde-wlth aﬁythlng

~ COLLISION IR s ' fff IN

di ed

_t3t¢w__ .
flnlshed

brie «

liae wi th anythlng ;_:--_j;._g .
cmp. W #NO LIVES,,game @VEI]

o

bgts

flnlshed

e bad _quye, a@

10@k at

j looptst w BAD ON(ai)

beq s next

mﬁvem_w'man X d5/d6 .
oy QOSltlon | m~-ﬁﬁﬁ_
asr W |

asr. w .
- Hove . W dl d3
'_mDVE“w dg d4
- add.w
hand 51de éf”the bad guy
_.C’I‘ﬂp w | d3 dS

no colllsltn

bge_s-

~add.w #BAD_BOTTOM_ HEIGHT i4

side of the bad gy
cip.w d4 ds6
number? | .
bhae o .no CGlllSlOn
add.w #MAN_WIDTH, da .
Ltion by hlS w1dth |
add.w

left Slde of the bad guy _;fﬁﬁgﬁT~ﬁffh_. .
| ;,are we t@ tfe-rlght of th15? |
;no then we can't calllde_i

CIp . W di, e
ble. S .NO COlllSl@n
with the man ;g'; T*iﬂﬁ;

add w BMAN HEIGHT d6
add.w #BAD_TOP. HEIGHT dz .
of Ehe bad QU_}’ e
ap.w d2 d6
vy
ble.s
agaln

move .w #0 man m_ _::-::_-._ ,:-5:
move .w #1 tiled

anlmatlon frame

.o CDlllSlGH nextlea IA] SIZE(a@),aI '

to the next bad guy
dbra dO

.finished ,;5%;731«;;42525521;;;;;¢«ﬁﬁiﬁﬂvﬁ%i?’”

are we above thm

n@ t;EH;WE can't callidef
,1ncrease

fln& the he1ght of her@ |
,and ----- the helght_

set the dl@d flag -
move .w #MﬁN CRUMBLE START man frame ;ffjﬁ,;;; .

flﬂd tﬂm& bottamf'

iﬁ}hsmallegi'

...............

move Oﬂﬁ-

gevee

the bad_collision label and the rts instruction.
There 1s a cheat on level four. When you fall
through the hole in the floor, instead of vanish-
ing off the screen like you used to, you will
now reappear at the top of the screen. Be care-
ful, because you can still fall too far and die.
See 1f you can change the code so that instead
of reappearing, you die, lose a life and the
level is re-initiated.

We need an end sequence because when
you die the third time, you have to quit and
reboot the computer in order to replay the
game. If you can work this out, do so, and also
try this: see if you can add a high-score table
to the game. If anyone is interested, I got 6750
betore 1 lost my first life.

Don’t worry too much if you can’t get the
high-score table sussed. There will be one in
next month’s 1ssue, along with a small options
screen at the start. Meanwhile, you can change
any of the code in this month’s issue. Try, for
example, to have the bad guys moving up and
down on the screen, instead of left and right.

TO ADD
EXTRA LEVELS

Design your new level inside of data_c.s, mak-
ing sure that there are 13 lines, each with 20
bytes on them. At present there are only five
types of block in the game and these are:

Left edge of platform
Middle section of platform
Middle section of platform
Right section of platform

. Stand-alone platform

W IR BRL N, O

After the level 1s created you need to tell the
program 1t exists. If you increase the equate
MAX_LEVELS and add a new jump label to
the jump table in init.s then create a new sec-
tion label and rts command to the end of the
file, then you should be able to jump around
on the new level. At the moment there are no

collectables and no bad guys. To place col-
lectables you need:

lea _Objects, a0
move.w #1,0BJ ON(a0)
move.w X,0BJ X (a0)

move.w Y,OBJ Y (a0)

for the first one, where X is the x position, and
Y 1s the y position of the object. To place more
after this use:

lea OBJ_SIZE (a0) ,a0l
#1,0BJ ON(al)
#X,0BJ_X (a0)
#Y,0BJ_Y (a0)

move . w
move . w
move .w

Finally, you need to tell the computer how
many collectables there are on this level with a
line like this:

.move.w # BER, to collect

Where NUMBER is the number of objects that
you need to collect to finish a level
Remember, this need not be as high as the
actual number of objects on the level. Take the
first level, for example. There are five objects
on the screen, but you only need to collect four
of them.

Placing baddies 1s almost the same. To start
with you do this:
lea _bad_guys, al
move .w
#BAD_STATE_LEFT, BAD_ON (a0)
move.w #X,BAD X (a0)
move.w #Y,BAD Y (a0)
move .w

#BAD_LEFT_START, BAD FRAME (a0)

Slightly more complex. When placed the man
must be placed on to a platform, otherwise he
wobbles in mid air. BAD_ON(a0) i1s loaded
with the current state of the man and can be a
choice of the following:

BAD STATE LEFT man 1S
left
BAD_STATE_FROM LEFT
facing forwards,
the left

BAD STATE_ FROM RTGH
moving came from right

BAD STATE_RIGHT the man 1s walk-
ing right.

walking

man 19
and came from

man not

Similarly, BAD_FRAME(a0) must be loaded

with the current animation, and you have these
to choose from:

BAD LEFT START
tion golng left
BAD LEFT END
goling left

BAD MIDDLE
screen

BAD RIGHT START start of
tion for right movement
BAD RIGHT END
for going right

start of anima-

end of animation

bad guy faces the
anima-

end of animation

That’s the first man. To place more than one
man down you must move into the array and
insert your next man using something like this:
lea BAD SIZE (a0) ,al
move .w
#BAD_STATE_RIGHT,BAD_ON (a0)
move.w #X,BAD X (a0)
move.w #Y,BAD Y (a0)
move .w

#BAD_RIGHT START, BAD_FRAME (a0)

When you have all your men down you don’t
need to declare the number, but you do have to
make sure there is a return from subroutine at
the end of your code. Then compile and away
you go. AF,

