&
s}
pal
ac
E
e

N
ot
©
S
>

.
O Take some tips from Populous Il creators Bullfrog
as they tutor you to games-writing prowess with
this fully-featured machine code package. Go on,
beat the softies at their own games!

o
<t
|
=1
B
BV
D~

O
Z

® A 500 Plus Compatible ® TMb Recommended @

Your Turn! Part 3

Bullfrog’s coding methods revolve around making
life as easy as possible, so giving more time to
pose in rather ridiculous positions for press pho-
tographers. Or not, as the case may be.

How to program your own games in assembler

'Moving on to the third part of a continuing
| series which aims to teach you how to
program like the pros. From the team that
brought you Populous, Bullfrog coder

| Scott Johnston explores more of the
. details of our demo game, which is gradu-
: ally building into somthing pretty playable.
| This month we learn how to deal with
background blocks and collisons...

LAST MONTH WE had managed to get a
man, the main character of our game, moving
around the screen, under joystick control and
properly animated. So far, so good.

But flying a little bloke around a screen
wouldn’t be much of a game, so it’s now time
to start adding some of the other elements of
the game. During the course of this month we
will place the platforms into the game.

The main display is usually the best part of
a program to start off with, so that you can get
a reasonable idea of how the finished product
will look and feel. Many games start off as
static background graphics and sprite anima-
tions, then the process by which the graphics
become a game follows on. Which means we
have started he wrong way round.

If you run the demo, your man should fall
from the sky, and land at the bottom of the
screen. You can’t actually see any platforms,
but as far as your man is concerned they are
already there. Pressing fire will bounce the
main sprite around, and you will find that he
can stand on the platforms.

Quit out of that, and have a look inside the
draw.s file. The reason we don't get all the
blocks drawn on the screen is because the
command

has a semi-colon in front of it. Remove this
and recompile. You should now have the level
Continued overleaf

DECEMBER 1992

dl LVINHOH VOINY

2661 d3dW3D3d

HOW TO PROGRAM

on screen. See if you can get to the top! Not
that difficult, really, eh?

Fed up of that level? Then go into move.s
and remove the semi-colon from in front of the
LEVEL equate. Now when the program is
compiled you will have a different level to try
and climb. Fall down the gap at the bottom of
the screen, and it will be time to quit and rerun
the program.

You can change several of the equates to
make the ‘game’ easier or harder to play.
GRAVITY is the speed at which you slow
down on your jump. JUMP is how high you
will go. LEFT_FOOT and RIGHT FOOT
control how far off a platform your man can
stand - decrease LEFT_FOOT and increase
RIGHT_FOOT to make it easier. The rest you
already know about.

That’s great, but you may well be asking
yourself *how does it all work?” Well, the two
routines that draw the block background are
_draw_blocks and block_draw.

The first scans through the map data held
inside data_c.s. If the number picked up is not
a zero then there is a block to be drawn. This
block number, as well as the x and y position
of the block, is then passed to the block_draw
routine. The first part of the drawing routine
sets up where to draw on the screen. The loop
picks up four words of data, and places them
down in the right place on the screen. At pre-
sent this is only a block draw, which means
that anything behind it is not visible. To
change it so that you could see through, you
would have to create a mask for the data.

GAME DESIGN
OVERVIEW

To turn this into a platform game, we need to
know the order in which we have to do things.
Listed below is a simple pseudo-code example
of the processing order. It includes any objects
that need to be picked up and any enemies that
need to be drawn.

1 Initiate level.

2 Clear the screen.

3 Draw blocks.

4 Draw objects.

5 Draw bad guys.

6 Draw hero.

7 Move hero — includes x,y and animation of
the sprite for our man.

8 Move bad guys — again this also includes x.y
and animation.

9 Collision check on objects — has the hero
touched an object?

10 Collision check on baddies — has our man
just touched an enemy?

As you can see, we still have quite a lot of
work to do. But saying that, now that we have

broken down the task into easy sections we
can bolt on new bits every month over the next
couple of months.

THE SCREEN

In low-resolution 16-colour screens, each pixel
is stored as four bits. Unfortunately the bits are
not stored consecutively, but as a single bit in
each of four words. These words are known as
bit-planes.

The first word of screen memory is the first
word of plane 0. The second word of memory
is the second word of plane 0. Thus we fill the
whole screen with plane 0 before we move on
to plane 1.

Again the whole screen is filled, before we
move on to plane 2, and then plane 3. Thus
32000 bytes are used in total. The first 8000
bytes are plane 0, the next 8000 bytes are
plane 1 and so on through planes 2 and 3.

For a colour to be displayed on screen, the
computer looks at the data in the bit-planes.
Each pixel on screen has bits in the bit-planes
set. These bits go to make up the colour of that
pixel. For example: if all planes are set, the
colour value is 1111 or 15.

Plane 0 sets the right-hand bit (bit 0), If we
clear plane 0 then the colour we get is 1110 or
colour 14.

Another example: plane 0 is set and all
other planes are clear, so the colour is 0001.

THE MAP

The map is stored at the bottom of the file
data_c.s. You can change this to your heart’s
content, and so make the game easier or harder
to complete. If you feel up to it you can try to
make the background scroll up and down with
the man, as he jumps about. Experts only need
apply for this bit. Don’t worry if you can’t do
this, as the final version of our game will not
have a scrolling background.

SNEAK PREVIEW TIME...
Bizarre situation at this point, I'm afraid.
We're going to go a few steps further this
month, but unfortunately we didn’t have the
time and the space to get the code on the disk.
so you're going to have to wait until next
month to put his into practice, but for now
give it a read through and see if you can
understand what's going on. It’s pretty easy.
The will be quite a lot of changes to the
code — the number of files on the disk will
change, making it easier to figure out what is

going on. The files we are most interested in
are these:

equates.i
structs.i
init.s
draw.s
move. s
data_c.s

Even without the code and from just the
names, you should realise that three files you
have not seen before are the equates.i
structs.i and init.s. All the equates
from move.s are going to be placed into the
file equates.i because this helps in trying
to track something down, or change a figure.

The major addition to the new program
will be the ability to collect something — and to
die! When you run the code, you will see a
screen with five Golden Ankhs on it. To col-
lect something our man must touch these.

When you try the code on next month’s
disk, you will find that the ankhs don’t disap-
pear. That is due to the fact that we, or should
you, have not written the collision code yet.

OK. Re-run the code and take a dive from
one of the top platforms to the floor — the man
will die. That is it for that game so far — only
one life at present.

The ankhs are in what is known as a struc-
ture. These are brillant things, in that you can
define several variable names and control
more than one thing with them. These names
are held inside the structs.i file and are:

OBJ_ON equ 0

;does the object exist
OBJ_STATUS equ 0

;what state is it in
OBJ_TO_DRAW equ 2

iWhere to get x, v and frame in one
OBJ_X equ 2
;where on the screen is it
OBJ_Y equ 4

;v version of above

OBJ_FRAME equ 6

;what 1is the frame being dis-
played

OBJ_SIZE equ 8

;how big is each object

The numbers represent which bytes are used
by this information. The numbers are all even
because 1 am using word-sized variables due

NEWX COMMANDS

DERA d0, label

The dbra command, or Decrement and Branch. This is a very useful command in that you can create loops easily
and quickly. The number of times to loop is held as 1 less than the actual in d0. This is because the test that is
performed is the equivalent of a BGE. So the similar code written without the dbra command is:

-move.w #5-1,d0 ;set up a counter
.loop_to_here

Do What Ever.sub.w #1,d0 ;subtract from the counterbge
.loop_to_here ;loop if d0 is not negative
BTST #1,d0

Bit Test. This command checks whether bit 1 in register d0 is set to a one or not. The bits are numbered from the
right-hand side, starting at 0 and moving up to 31 on the left.

HOW TO PROGRAM

2661 ¥3anadia Il LvwHod VOINY

AF,

;greater than the top of the object

THE COLLISON DETECTION ROUTINE

;bottom of the object?

move.w man_x,d0 ipick up our man_x position blt.s .no_collision ;yes then we cant collide

a5 $FOUR, 40 sl o e s o R M EE ;compare right of man with the lefc
move. W man_v,dl ;pick up our man vy position ;eide of the object Y g e ;
asr.w #FOUR, dl -gcalie down tola soreen coomdlt -no_collision ;if it is greater then we cant cellide
movt; W ao d2! :take a copy of x add.w #ANKH_WIDTH, A4 ;move to the right side of object
add ;, #M’AN WIDTH,d2 '-and add the width of our man cmp.w d0,dd ;jcompare left of man with right side
move.w di,ds3 ;take a copy of y iof the object £) . '
add.w #MAN_FEIGHT,d3 ;and add the height of our man PLt°S .no_collision jif less than then we cant collide
1ea. Obj;cts aO' {-point at our objects move.w #0,0BJ_ON(a0) ;clear out the object as we touch
move.w 4MAX_OBJECTS-1,d7 ;counter of how many cbjects e #l,tiﬁiOIITCtdE ifeaﬂce tie Eimber left to get
.looptst -w 0BJ_ON(a0) ;is the first one present HEVE-H tlota — EVNEL By MRl SglEhies ens e . i
beq.s next Lo T L e mulu #SCORE, db ;that is received by getting object
‘0?1;3] f a2 add.w d6, score ;score = level * multiplier

r,nove W OBJ_X(a0),d4 ;jyes it was, get the object x move.w #DELAY,delay :place a delay to stop instant
move.w OBJ_Y{aO) Jdé r'au'ld % valuz;.s - Jump. next ;we want to get the next object
cmp.w d3,d5 ;Is the bottom of the man -no_collision

:because the last did not exist or we didnt touch it

.lea

.bgt.s .no_collision ;ves then we cant collide with it 5
add.w #ANKH _HEIGHT,d5 ;move to top of the object ;a :
CIp W dl,ds ;is the top of the man less than the ApeEch

;80 move the pointer to the next
srepeat until there are no more

CBJ_SIZE(al},al
d7, . loop

to the fact that we have loads of memory to
play with.

If this was a full-sized game I would proba-
bly be using byte-sized variables for anything
that I could, just to save space. One thing to
note, though, is that byte-sized variables tend
to be slower, as they must be extended into
words before they can be wused. In
Powermonger, for example, the people took up
50 bytes each, and there were up to 512 people
to each map.

The variable name OBJ_TO_DRAW is
there for the purpose of clearer movems. It is
always a good idea to stick in extra labels for
this kind of thing because when you try and
read your code several months or even weeks
later, you may not see the relevance of
movem.w OBJ_X(a0),d0/dl/d2 whereas
movem.w OBJ_TO_DRAW (a0) ,d0/d1/d2 is
a lot easier to understand.

Adding helpful equates and labels does as
much for the readability of a program as
decent comments. It's a good idea to have vir-
tually NO numeric constants in your code. All
right, so there are loads of them in the demo —
but that’s because I was being lazy.

The memory is reserved for the objects at
the end of data_c.s and again shows good use
of equates. OBJ_SIZE is the number of bytes
used per object, and MAX_OBIJECTS is the
number of objects we can have. Therefore if
we change our mind on how the objects are
held, or how many we can have, all we need to
do is change the equates, rather than having to
go back into data_c.s.

The objects are defined inside init.s which
uses a jump table to decide which level we are
currently on. The most obvious way to do this
would have been...

cmp . W #LEVEL_1,d0
beg level 1
cmp . W #LEVEL_2,d0
beg level 2
cmp . W #LEVEL_3,d0
beg level 3

and so on. The problem with this is that if we
had loads of levels then we would need loads

of compares. Whereas a jump table does
exactly the same thing faster, in less space and
is just as readable. Compare that with this...

move.w
.Jump._table (pc,d0.w) ,d0jmp
.Jjump_table(pec,dl.w) . jump_tabledc

wlevel 1-.jump table
Agtiliaveldesw 1 eivae 1 02—
.Jump._table

:2nd levelde.w, 1 e v e 1 . 3 —
.jump_table

;3rd level

OK. the next step is to put the collision in. In
the separate panel, there’s a listing of a routine
should do just that, which you will need to
type in. You don’t have to type the comments
in if you don’t want to, but they will help a lot
if you ever come back to the routine. The extra
code goes in the bottom of file move.s after
the label _collect_collision.

Typed that? Good. Sorry there is so much
of the stuff. Did you understand it?

Recompile and run the program: you
should now be able to pickup the Ankhs at the
top of the screen. If you put a semi-colon in
front of the move.w #DELAY .delay you will
see (next month, I'm afraid, when you run this
lot) that if you complete the level, you will
instantly flash to the next one rather than wait-
ing for a second or so.

Take a look at the panel on masking next
and try that out. Then there’s a few other
things you can try to do for yourself.

One: change the score equate, to have mas-
sive high scores and so on. The score,
incidentally, uses a single colour font draw
which when passed an x and y position in
d0/d1 and a2 pointed at the text to display, is
only capable of holding 5 digits at the present,
but that should be easy to change.

Two: Add new levels to the game. Increase
MAX_LEVELS to reflect the new number,
and there you go.

Three: Change the font draw into a masked
font draw, and give it the ability to display
more than one colour,

Next month: enemies and music! AF]

- MASKS

| At present the Ankhs are not being masked as they are drawn.
This means that if they were placed in front of a platform, the plat-
form would disappear. The most difficult area of programming
animations to understand is the principle of masks. If you position
a sprite on the screen, the block containing the sprite will affect
the colours already there. To overlay the sprite properly against
the background, you first need to create and position a mask
which changes the screen colours in the area of the sprite block.

Now when you lay the sprite onto the screen, the colours of
the mask change back again to the correct orginal colour.

Confused? A mask is a block of data which has a bit set for
every pixel that is blank on the sprite block. The mask can be
‘AND.W’ed with the background data, before you ‘OR.W' your
sprite data to draw it on the background.

If you look inside draw.s at the routine _draw_collectables
you will see that we have no mask. You can calculate this when
you draw your sprite by replacing the four move.w d?,?(a0) with
the following piece of code.

Please note that, as throughout this month's piece, some of
the comment lines have been wrapped to the next line.

move.w dl,ds ;copy plane 0 into d5
or.w dz2,ds ;or plane 1 with 45
or.w d3,ds ;or plane 2 with d5
or.w d4,ds

;or plane 3 with d5

not.w ds

;invert d5 to create mask

and.w d5, (a0)

;jmask background (plane 0)

or.w dl, (a0)

;combine with sprite plane 0
| and.w d5, PLANE_SIEZE(al)

| ;mask background (plane 0)

| or.w d2, PLANE SIZE(al)
;jcombine with sprite plane 0
and.w d5, PLANE SIDE*2 (a0)
:mask background (plane 0)
or . W d3, PLANE_SIZE*2 (a0)
;combine with sprite plane 0
and.w db, PLANE_SIDE*3 (a0)
;mask background (plane 0)
or.w dd, PLANE_STIZE*3 (a0)
;combine with sprite plane 0

Though, as you can see, this takes quite a lot of instructions, it
would be much easier if we stored a copy of the mask with our
data, then the top half of the above code would not be needed.

