
E
-
aai

q

I
N
o\

;
LU

UJ
U
IJJo

bur Tlrrn! Patt 3 rift*lri'.luqi*tt$*'""'-
How to plogram your own garnes in assembfer
Moving on to the third part of a continuing

series which aims to teach you how to

program like the pros. From the team that

brought you Populous, Bullfrog coder

Scott Johnston explores more of the

details of our demo game. which is gradu-

ally building into somthing pretty playable.

This month we learn how to deal with

LAST MONTH WE had managed to get a
man, the main character of our game, moving
arcund the scrcen. under joystick control and
properly animated. So far. so good.

But flying a little bloke around a screen
wouldn't be much of a game, so it's now time

to start adding some of the other elements of
the game. During the cou$e of this month we

will place the platforms into the game.

The main display is usually th€ best pan of
a program to sta.ft off with, so that you can get

a rcasonable idea of how the finished product

will look and feel. Many games start off as
static background graphics and spite anima

l ion\ . lhen lhe procrss b) which lhe graphics

become a game follows on. wlich means we
have sta{ed he wrong way round-

If you run the demo, your man should fall
from the sky, and land at the bottom of the

screen. You can't actually see any platfoms,

but as far as your man is concemed they are

already there. Pressing fire will bounce the

main sprite around, and you will find that he

can stand on the platforms.

Quit out of that, and bave a look inside t}le

draw.s fiie. The reason we don't get all the

blocks drawn on the screen is because the

dbra d4, .loop-l

has x \emr-colon in fronl of it. Remove thi'
and recompi le. You should now ha\e lhe level

Contlnucd ovarlert

backoround blocks and collisons. ..

!

F

t
7
t-t
mom

m

6
N

on screen. See if you can get to the top! Not
that difficult, really, eh?

Fed up of that level? Then go into move. s
and rcmove the semi-colon from in front of the
| [\,LL equate. Now when the program is
compiled you will have a different level to try
and climb. Fall down the gap at the bottom of
the screen, and it will be time to quit and rerun
the pro$am.

You can change several of the equates to
make th€ 'game' easier or harder to play.
GRAVITY is the speed at which you slow
down on your jump. JUMP is how high you
will go. LEFI_FOOT and RIGHT FOOT
control how far off a platform your man can
stand - decrease LEFI-FOOT and increat
RIGHT_FOOT to make i! easier. The rest you
akeady know about.

That's great, but you may well be asking
youself 'how does it all work?' well, the two
routines that draw the block background are
_dmw_blocks and block_draw.

The first scans ihrough the map data held
inside data-c.s. If the number picked up is not
a zero then there is a block to be drawn. Thi(
block number. as well as the x and y position
of the block, is then passed to the block draw
routine. The frst paft of the dmwing routine
sets up where to draw on the screen. The loop
picks up four words of data. and places them
down in ihe right place on the screen. At prc-
sent this is oniy a block draw, whicb means
that anything behind it is not visible. To
change it so that you could see trough, you
would have to crcate a mask for the data.

(EAME DESIIEN
(o\rER\ttElit
To tum this into a platform game, we need to
know th€ order in which we have to do things.
Listed below is a simple pseudo-code example
of the processing order. It includes any objects
that need to be picked up and any enemies that
need to be dmwn.

I lnitiate level.

2 Clear the scrcen,

3 Draw blocks.

4 Dmw objects.

5 Draw bad guys.

6 Draw hero.

7 Move hero - includes x,y and animation of
the spdte for our man,

8 Mov€ bad guys - again this also includes x,y
and animation.

9 Collision check on objects - has the hero
touched an object?

10 Collision check on baddies - has our mdr
just touched an enemy?

As you can see, we still have quite a lot of
work to do. But saying that, now that we have

equ 6
f 7 : m 6 I - ! 6 1 n n r l l c

equ 8
obj ect

broken down the task into easy sections we
can bolt on new bits every month over the next
couple of months.

THE SGREEN
In low-resolution 16-colour scrcens, each pixel
is stored as four bits. Unfortunately the bits are
not stored conseculirely. bul as a single bit in
each of four words. These words arc known as
bit-planes.

The first word of screen memory is the first
word of plane 0. The second word of memory
is the second word of plane 0. Thus vr'e fill the
whole screen with plane 0 before we move on
to plarc l.

Again the whole screen is filled, before we
move on to plane 2, and theD plane 3. fius
32000 bytes are used in total. The first 8000
bytes are plane 0, the next 8000 bytes are
plane 1 and so on through planes 2 and 3.

For a colour to be displayed on screen, the
computer looks at the data in the bit-planes.
Each pixel on screen has bits in ihe bit-planes
set. These bits go to make up the colour of that
pixet. For example: if all planes are set, the
colour value is ll I I or 15.

Plane 0 sets the right-hand bit (bit 0). If we
clear plane 0 then the colou we get is 1110 or
colour 14.

Another example: plane 0 is set and all
other planes are clear, so the colour is 0001.

THE NAAP
The map is stored at the bottom of the file
data_c.s. You can change tllis to your heart's
content, and so mate the game easier or harder
to complete. If you feel up to it you can try to
make the background scroll up and down with
the man, as hejumps about. Expefts only need
apply for this bit. Don't wony if you can't do
this, as the final version of our game will not
have a scrolling background.

SNEAK PREVIEW TIME,..
Bizarre situation at this point, I'm afraid-
We're going to go a few steps further this
month, but unfonunately we didn't have the
time and the space to get the code on the disk.

so you're going to hav€ to wait until next
month to put his into practice, but for now
give it a read through and see if you can
understand what's going on. It's pretty easy.

The will be quite a lot of changes to the
code - the number of files on the disk will
change, mating it easier to flgure out what rs

going on. The liles we are most interested m
are these:

equates. i
structs. i
f n l E . s

draw. s

data_c . s

Even without the code and from just the
names, you should realise that thrce files you
have not seen before aJe tle eqLates. i
structs. i and init .s. AII the equates
from move. s are going to be placed into th€
file equates. i because this helps in tryidg
to track something down, or chalge a figure-

The major addition to the new program
will be the ability to collect something - and to
die! When you run the code, you will see a
screen with five Golden Ankhs on it. To col-
lect something oul man must touch these,

When you try the code on next month's
disk, you will find that the ankhs don't disap-
pear. That is due to the fact thal we, or should
you, have not written the collision code yet.

OK. Re-run the code and take a dive from
one of the top platforms to the floor - the man
will die. Thal is ir for that game so far - only
one life at present.

The ankhs are in what is known as a struc-
ture. These arc brillant things, in that you can
define several variable names and control
more than one thing with them. These names
ar€ held inside the structs.i file and arc:

OBJ_ON equ 0

OBJ-STATUS equ O
;wha! sEate is i t in
OB-I_TO_DRAW equ 2

v v - n . l f r i r o i r ^ n o

OBJ_X equ 2
. u , h 6 7 6 ^ n t s h 6 c . i 6 . n i c i t

oBJ_Y equ 4

;y version of above

OB]_FBAI4E

;what is the
played

OB.J_SIZE
. h ^ n , F , i ^ i e 6 : . h

The numbers represenl \rhich byles are used
by this inlormalion. The numbers are all even
becau.e I am u\ing $ord-si7ed vai'iables due

NE\V COMMANDS
D}JHA OU, IADC]

The dbra command, or Decrement and Branch. This ls a very uselul command in that you can create loops easily
and quickly. The number ol times to loop is held as 'l less than lhe aclual In d0. Thls is because the lest that is
performed ls lhe equlvalent ol a BGE. Sothe slmilar code written wilhout the dbla command ls:

nove.w +5 1,d0 rset up a cor-rnler
- loop-l o,here
Do what Ever-sub.w +1,d0 ;subtract from the counlerbge
. oop_ o_l - e r oop ' d0 .s no, neoa.f, /e

BTST +1, d0

gil Test. Thls comhand checks whether bit 1 in register d0 is set to a one or nol. The blls are numbercd frcm the
rlght-hand slde, startlng at 0 and movlng up lo 31 on the left.

THE COLLISON DETECTION ROUTINE

+!rA!^_WIDTli, C2 iand a.ld the h'ldth of our nan

; take a copy of y

iiMAN_flEIGHT, d3 ;and add rhe heighL of our nan
' ^ ^ i n f : F . , r ^ h i . . r c

' r 4 A y , O B _ ' S - . . o
; o L - e o o ! a d , y o b D ,

. n i . r , , n ^ , r m ' . Y n . c i i i . .

;scaie donn to a screen co ord

rscale do,,l'n to a screen co ord

i lake a copy of x

. i c , h o f l r c F

;no so lets look aL Lhe next

;yes i t was, geL the object x

; and y vaLues

; ls the bol ton of :he ma.r

;Lrot ton of Lhe objecl?

bl l .s .no_coLl isron
cmp.w d2,d4

; s ide of the objecL

bst . s .no_col l is ion
add.w +ANl{i{_l4I DTH, d4

cnp- ln d0, d4

;of rhe objecl

bLt . s .no_colLis ion

move.w +0,oBJ-O] ' l (a0)
sub. \ , / +1,1o-colLect
move. ln lo la i_Levels,d6
rulu +SCORE,d6

add.w d5, score
move.w #DELAY, delay
j r.mp next

. no_colhsion

;yes then lre canl colLide
. . ^ F n : r a r l ^ h r ^ F m : n L , i i h t s h 6 l a f i

1 6 . r . r - n i d e
r t ^ t r c i ^a ^ f ^h iF . ts

^ , m - . L L , i . L c d e

. i f l a c c i f i . i h 6 r b a . : n f . ^ l I i . l .

;clear out the objecL as we touch
n , n f , 6 r r o F r t s ^ ^ 4 r

;as compuEe Ene score
. F h : F i a r o . . i v o / l b v ^ A i f i r d . h i A . t

;score = 1evel * mul t ip l i , . r
. n r r . a : / l a l : w F - c F ^ n i . e r i n f

;rre ,,rant to qet the next objecc

. Looptst . l r OBJ 0N (dl)
beq,s , next

nove.u ' oBl-X(a0),d4
move.w OBJ-Y(a0),d5

cmp. vr d3, d5
. ^ ' o r F o r F L r r F l i 6 _ . n . 4 r h . . h i p . F

.bSt.s .no_col l is ion ;yes then we can! colL ide wi th i l
, . a . \ X f i u t - (u , o . : . o 6 - o c o p o . ! , e o b .

;because lhe last did not exist or we didnt touch it

. l - " o B l S - - 8 r " 0 , a 0 i s o r o e h e p o - " t e ' E o c t e _ . x -

' r o ^ 6 : F , , n f i l r h E r a : r a n . m . r c

' l c : . a f . n ^ f F h a m : . l F < c i h : . F l r p

D
=
-

Ei

*

n
I

U
m
-
m

@
m

6
N

io the iact that $,e h.rve loads of memory to

play with.

Ifthis was a full-sized ganrc I would prcba-

bly be using byre sized vrriables ibf an!thirg

that I could. just to save space. One tbing lo

note. though. is that byte'sized vafiables tend

to be slower. as they must be ertended irto

words before they can be used. In

Pou,ennoDger. for example. the people iook up

50 bytes each. and there lvefe up to 512 people

to each map.

l n e \ r r i J o l e r l | l e O B J , I O - D R A w i r
rhere lur Ihc purpoie of c leJref r ,o 'e _ ' . I l i

always a good idca !o stick in extm labels fbr

this kind of thing because *,hen you try and

read your code several nonths or even !|eeks

laler. you mav not see lhe relevance of
movea. r i OEJ l . : (a!) , i0/d1, /d2 whereas

o - _ . . " O D . d , o 0 o o i .

a Lot easief to unde$tand.
Adding helpful equates and hbels does as

nuch ibr the rcadab;lily of a prograrn as
. l e . e I . o r n r r r (n . I t \ . . o n ^ d i d e r l o h . \ e ! i l

tual ly NO nunrer ic coDstants in youf code. Al l

righl, so lhere are loads of then in the demo

but th as becausc i was being lazy.

The memory is reserved for the objects al

lhe end of dala c.s and again sho\\'s good use

of equates. OBJ_SIZE is the number oi bytes

used per object. and MAX_OBJECTS is the

number of objects we can have. Theretbre if

we change our nind on how the objects are

held, or how nany we can have, all we need k)

do is chanSe the equarcs, ralher than having to
go back into data c.s.

The objects are def ined inside in i t .s which

uses aiump lable to decide which level we are

cun€ndy on. The mosl obvious $,ay to do thrs

rvould hrve been.. .

b€q

Eeq

*LEIJEL] , CO
Lewel 1
*LEYEI- :, ciO
I evel :
*LEI/EL], CO
r e r e l l

itnd so on. Thc problem with this is that if we

hJd loJJ5 oi l (v(l ! rhen sc \o| | ld need l . -d '

o i conparcs. whcfcas a . jump lable does

exacl ly thc sane th i l rg lasrcr . in less space and

is jusr rs rcadable. Compare that wi th th is. . . At presenl the Ankhs are not being masked as ihey are drawn.
This means that if they were placed In front of a platform, the plat"
form would dlsappear. The most dlfflcull area ol programmlng
animations to understand ls lhe principle ol masks. lf you position
a sprite on the screen, lhe block conlaining the sprit€ wlll afl€cl
the colours already th€re. To overlay the sprlte properly agalnst
the background, you flrst need lo create and positlon a mask
which changes the screen colours in lhe area oflhe sprite block.

Now when you lay the sprlle onlo lhe screen, lhe colours ot
the mesk change back again to the cortecl orginal colout.

Confused? A mask ls a block ot data whlch has a blt set lot
every pixel that is blank on the sprite block. The mask can be
'AND.Wed wilh the background dala, before you 'OF.W your
sprite data to draw it on the background.

lf you look inside draw.s at the rouilne _draw_collectables
you wlll se€ that we have no mask. You can calculate thls when
you draw your sprite by replacing the four move.w d?,?(ao) with
lhe followlng piece of code.

Please note that, as throughout this monlh's piece, some ol
lhe comment lines have been wtEDoed to the next llne.

MASKS

. t u ' n p : a b l e (p c , ! i - 1 . l J t , d 0 j n p

. j runp LabLe (!c, d0.r ' , i) . junp

.l.j leve,_: . -Limp_Lable
; is i le . ' .e ldc. , , " l e . r € -
. Iump idr le

; : n i l € . r e l d c . w 1 e . r e 1

. l u n p : a b r e

; l r r l level

tab - .d.

OK. the nert s tep is to put the col l is ion i r . In

rhe sep.rmte panel . thefe s a l is t ing of r fout ine
drould do just that . which you wi l l need to
type in. You don t hrve Io ttpe the conments
in i f \ou don t $ 'ant to. but d ley wi l l help a lot

if vou e\'er come back ro the rolrtiDe. The extm

codc goes in the borlorn of file nro|e.s aftef

the labcl _col lcct_col l is ion.
Tiipcd thall Cood. Sor_ry therc is so n ch

of the stuf f . Did you undersrand i t l
Recompi le and run the programi !ou

sbould now be able lo p ickup the Ankh\ at rhc
l .p oI lhc .crcc ' r l i rog J ' .1 1 .cn]r c^ l . r in

lrrcnt ofthe move.$, #DELAY.delay !ou $,i11
. ! c I n c \ r I n u r r h . I I r . . J . . i L l . u h r . l) u U r , r n l h i .

lot) that i f you conplete the level . you iv i l l

i n . r J n r l) l r . h ^ r e n i \ . n / - . h e f t h : r n $: , i t -

ing fbf a secoDd or $.
Take a look al tbe panel on misking nex(

and try that out. Then there s r lew other
th ings you crn t ry lo do fbr youAel l .

Onc: chrnge the scofe equrte. to have mas
, r r c n i p h , . o r . . J n r . o u n I h e . c o r e .

incidenlally. uses a single colour font dlr1w
s h r . h r v f e r p . . * e J : , n ' r n J) p o \ I r o n n
d 0 J l . n J r 2 p n i | l r e J i , r r h e t e \ r r u J i . t ' r ' . i .
orly capable of holdirg 5 digits rl lhe prcsent.

but tha! should bc crsy 1() changc.
Tlvor A&l rew levels lo the game, lncreasc

MAX LEVELS to rcilcct thc new number.
and there you go,

Three: Changc the fonl drar',' into a masked
finx dm$,. and give it the ability to display
more rnillr one colouf.

Next moDth:enemies rnd music l @

;or: p lane 1 wi th d5
move.rr d l , d5
o r . w d 2 , d 5

or.h, d3, d5
or. , r d4, d5

;or p lane 3 l r i ih d5
not.1r d5

r invert d5 io creaEe mask

and.w d5, (a0)

;mask backqround (pLane 0)
d 1 , (a 0)

;combine , r i th spr iLe plane 0
dnd.w d5 , PLA-|,IE_S I ZE (a 0)
;mask backqround (pLane 0)

d2, PLANE SIZE(a0)
. . - m h i . . ' , i f h c n r i l - . n l : n a n

and.n d5, PLANE SIDE*2 (a0)

d3, PLANE_SIZE*2 (a0)
;conitrine with sp.ite plane 0
dnd.w d5, PLANE_SIDE*3 (a0)
' m i c L ' h : . L - n r ^ r n , l / n 1 : n 6 n l

d4, PLANE*SIZE*3 (a0)
' . . h t i i i . n , i t s h a n r i F . . l : n o n

Though, as you can see, this takes qllte a lot of instructions, lt
would be much easler il we stofed a copy ot the mask wllh our
dala. then lhe toD hall ofthe above code would not be needed.

