HOW TO PROGRAM

s
h
b

I§

(The Collection

0
z

rom HiSo

7 RRP £4
aC

VP

. E!

o a Take some tips from Populous |i creators Bullfrog
as they tutor you to games-writing prowess wit|

Z this fuily-featured machine code ﬁackage. Go on,

beat the softies at their own gamesl

® A 500 Plus Compatible ® 1TMb Recommended @

Your Turn! Part 2

How to program your own games in assembler

Part 2 of a continuing series which aims to Welcome back. If you followed last you change the animation equates the man

NOVEMBER 1992

Bullfrog’s coding methods revolve around making
life as easy as possible, so giving more time to
pose in rather ridiculous positions for press pho-
tographers. Or not, as the case may be.

. th's article, well done. If not ould start doi strange things. Another
teach you how to program like the pros. e e o eavares s i Draws o

go back and do so. This month example of equates is in Draw.s on the two
we're going to tie the movement of our sprite asr.w lines, with the word FOUR. This is eas-

Bul
Ifrog coder Scott Johnston delves to the joystick. If you run Demo you will find ier to understand than placing a 2 on the line.

into the mysterious world of player control the man now runs left and right with momen- Continued overleaf
" tum. The exit key has changed to Q because

and how to tweak a sprite’.05s movement when Escape was pressed you got the repeatof | APQLOGIES

. N your last input. Does the program work? Great. Our sincere a
H H : X . pologies for the lack of an
to give an impression of inertia and Now let’s make him run up and down the IFF to binary convertor program on this
. . . screen as well. If you look inside Move.s you month’s Coverdisk. This was entirely
momentum. So if yOU want to avoid Stllted, will notice two new things. At the top of the due to lack of space on the disk, and we
; file is a small list of equates. These control the apologise to all the coders straining at
lifeless characters, read on... graphics for our man and the speed he acceler- the leash to put their own graphics into

the demo. Never mind, you've got
another month to make them look even
better than they are now!

ates and moves. Try changing the two equates
for the speeds. The man should move differ-
ently depending on the numbers you put in. If

y i

2661 dTJaGWINON

. screen.)

HOW TO PROGRAM

Anyway back to Move.s. After this we have
the subroutine _move_all. Last month we
placed all our code here, but now we will
place our code into new subroutines which
_move_allcalls, Our man now has 5 variables,
These are as follows:

man_x (whereabouts he is horizontally on the

man_y (whereabouts he is vertically on the
screen.)

man_vx (the speed and direction in which he
is travelling horizontally.)

man_vy (the speed and direction in which he
is travelling vertically.)

man_frame (The current frame of animation
that is displayed.)

Inside the first of our new routines _man_x
is the code to read the joystick, and move the
man left and right. Study this. Now if you
copy this and place it into _man_y, change the
variable names to their Y counterparts and
then change the following lines:
cmp.w #300%4,dl tocmp.w #176*%4,d1
move.w #300%4,dl tomove.w #176%4,d1
and place an asr.w #FOUR,d] into draw.s at
line 14. Now you should have momentum on
the Y axis. Try it. Did it work? If not go back
and study the code again. You probably made
a small mistake somewhere along the line.

Right, now change the names of the dot labels
(those that start with *.") to what they are actu-
ally doing. Good, now did you under-stand

Making game sprites
move is more than just
working out where they
are and finding the right
frame. To behave natu-
rally, a sprite has to
obey natural laws like
gravity, inertia and
movement. [n addition,
the design of a sprite’s
environment (the
Speedball pitch is one
example) also helps 1o
shape how a character
moves. You con break
these guidelines — many
programmers don’t even
consider them. But
games which do use
them tend to be more
playable, more fun and
more challenging.

that code? If so see if you can change it so that
instead of the man stopping when he reaches
the edge of the screen, make him bounce off.
Basically you change four commands from a
Move.w to a Neg.w. If you did not understand
it, don’t worry because 1 will explain now pre-
cisely what it is doing.

To start with we pick up the velocity of the
man, and the direction in which the joystick is
being moved. The joystick will be a 1 if the
joystick is going right, 0 if it not moving, and
-1 if it is going left. We then multiply the joy-
stick direction by the acceleration and add it to
our current velocity.

Now the velocity needs to be checked to
make sure that we are not going faster than we

want in either direction. First start off by
checking in the right-hand direction, and if it is
going too fast then scale it down to the mini-
mum speed. Then check the other side and
scale it down if need be. OK that’s the velocity
just about done. We now get our current x
position and add the velocity to it. Check the
new Xx position with the lefi-hand side of the
screen, and if we have gone off then move us
back on to the screen and stop the velocity.
Test the other side of the screen, and again
stop the velocity and move it back on if it has
gone off screen. The final piece of code we
have in this routine is the slow down. This
checks to see if we are moving the joystick, if

we are then we don’t want to slow the man
down. After this try and find out in which
direction you are moving. If you're going left
we want to increase our velocity to slow it
down. Sounds strange but the maximum left
speed is in fact —16, or whatever you change
MAX_SPEED to. If you are going right you
want to decrease our speed. The reason for
subtracting 2 and then adding a 1 to the veloc-
ity is so that you don’t have to branch past the
going-left section. Follow that OK?

Now wade through the code in _man_anim
and see if you can work out what is going on.
Contlnued on Page 142

Block Programming

o &

& o

w 3 ﬁ 3 & -
¥ £ - -] [* g oo e e
w o =~ X 90 € o X 9 g et § - g
- T T - SR SR Y R~ w > o
8 ~ 0 =~ & 8 0 & Cw ~ @ 3 O 0o
I € U A XTI A OO @MV I "V

Any bug means the whole
file must be loaded

This is the block approach, where all code is in one mas-
sive block. Difficult to debug and a pain when it comes to
going to one end or other of the file; avoid this approach
if you want fo stay sanel

Thats the way you do it!

Module Programming

Keyboard

All bugs are localized.
Finding them is easier.

Modular programming, where code is split into smaller
blocks with one controller file at the beginning is easier
fo debug, easier to look through and is generally quicker
to work with.

Some people last issue were confused as to how you
go about using the Bullfrog development system.
Well the idea is that the code is controlled by one
file, which loads in all the others. This control file is
called Demo.s. So as you make changes to other
files, you must save them. Then load and assemble
Demo.s to see the results.

This system has a lot of advantages. Programmers
build up a collection of small programs and odd utili-
ties which they use time and again. There’s no point
keeping them all in the same file though. You might
only use one of these routines, and all the others are
stuck to it, wasting memory and disk space.

Hence the need to split programs up into many
small files. Once assembled, all the code will be in
one block anyway. This approach to splitting up pro-
grams into small chunks is known as modular
programming. Although assembler is not well suited
to this approach in some ways, it still makes sense to
keep routines in separate files.

HOW TO PROGRAM

NEW COMMANDS

Neg.w d0.

This reverses all the bits in d0. This is a great help when you
want to change the signs of numbers. For example 5 becomes

-5, and —9 will become 9.

SC 110042

You will have noticed that there are loads of
other files which we never really touch. The
only ones we have used so far are Move.s
Demo.s and Draw.s. It you have looked at
Demo.s then you will see that toads of things
are included from here. Most of these tiles are
for various set ups, ie read the joystick. Others
are called from various places inside our code,
for example the sprite draw section, One of the
more important of these files is Display.s. If
you have a look inside Display then you will
see the main loop of our program. It starts off

routine for man_y so that gravity plays a
part. Good luck.

For the animation of the man you want him
to look like he is actually going the way he is
facing. There are several ways in to do this.
The best way 1s pick up the current frame of
our man. Then have a look at the man’s veloc-
ity, it this is a zero it means he is not moving,
therefore you'll want to display the man tacing
towards the screen. If the number is negative
then the man is running to the left. You have
four frames of animation for our man in both
so check that the current frame

by waiting for the vbi. The vbi, or vertical directions,
blankinterrupt huppens every 50th of a second,
and is the time in which the videobeam is trav-
elling from the bottom of the screen, back up

to the top.

does not exceed the allowed frames, or that if
it does you set it back to an allowed frame.
And that's it for now... see you next issue. 2>

RECOMMENDED
READING

We then clear the screen, this is so that we
don’t have the previous screen display at the
same time. Clearing the screen is not always
the quickest way of doing things, for example
you could remove the sprites, and then redraw
them. Draw Afl calls the routines inside of
Draw.s, and this is where we draw everything,
the man, the blocks, the objects, everything.
We then swap the screens. The system you are
using is called double buffering. This is where
you see one thing on the screen, while you are
drawing the next scene on another screen. The

Amiga

Machine Language

Zool is one of the best examples of movement control tweaked to perfection.

The main character’s behaviour has heen developed extremely well. A practical guide to leaming

r language
on the Amiga

screens then swap places, and we draw the
next scene (scene 3) on the first screen. Swap
places again and so on.

This prevents the graphics from flickering
when they are drawn. We then go on to the
movement routines, and here we move every-
thing, advance the animation counters, detect
for collision, kill off the hero if you can.
Check for a key press. if it hasn’t been
pressed, then loop around and do it all over
again. Otherwise exit from here, turn every-
thing back to normal, and terminate the
program. That’s just about it for this month.
Next month we will start 10 make our small
program into a platform game. This includes
the need for gravity. See if you can change the

Mastering Amiga Machine Language by
Stefan Dittrich is one of the easier tutori-
als to get to grips with. Other good
reads: System Programmers Guide (also
Abacus).Programming the Z80 by Rodney
Zaks and The Hardware Reference
Manual, published by Addison Wesley.

Myth is one of many games where the control leaves a lot to be desired. The
main character moves, but too much time is spent moving. More speed!

Using this months code

Anyway, just boot up the Coverdisk but be sure to have two blank disks plus a
copy of Devpac handy. After the two demos have been decrunched (which takes
only a few minutes) you will then be prompted to enter the Devpac disk.
Another minute and all the new versions of code will be dumped on to it, ready
for you to use.

z661 43aNINON TRl IVINHOH VOINY

This month, due to an especially tightly packed Coverdisk, the code has to be
dearchived on to a copy (a copy, mark you) of the Devpac disk from last month’s
issue. In order to get at it, you will need two blank disks for the Legend of Valour
and Chaos Engine demos. Don’t give me hogwash that you don’t want to see
them — they are of the quality every programmer should aspire to.

Devpac Aniga Version 2.15 Copyright © HiSoft 1988 L lLm]

Devpac Aniga Version 2.15 Copyright @ HiSoft 1988 | Devpac Aniga Version 2.15 Copyright € HiSeft 1988 |y
[o e

ve left ;is he :omg Iefl
8l 08 add 1
WHAN_RIGHT_FINISH, 80 ;see if ve have o(!u the en
.finished 3nin not then we have
nave.w WHAN_RIGHT_START,d8 .oxhermse replace vi
bra.s .finished_anin ;again we have finish
10K so we are
isubtract 1 f
shave we got to end o
n ;na then ve have finl
nove.w BHAN LEFT_START,d8 ;yes, 5o restant anin
bra.s .finished_anin iagain e have finish
.stationary_nan s the 150
6.0 WMAN_STATIONARY, d8 ;5o lets’ u& the anin
inished cha
;s put 6ack current

H []
SCRETN_HIDTH#SCREEN_HEIGHT
_display

iy
hoven, | dhﬂ/lﬁ-m -(sp)
Jse t_up_dise

0
NG Bullfrog Demo LRI
AlSS Hovenent

mun speed of nan
,speed aof acclenhnn
;start frane m
send frane nuber
;ivane for man standing still
.surt frane nusker for nan »
;end frame nunber for nan run

W Leer rivisi, 0
.finished ant N
dse _vait_vbi ; wait for a

Jsr “cleab_screen

nove.w #5787, (COLOR).1
Jse _drau_all 5 draw all th

5 display the screen

novl

.l‘m:shed_xmu
‘ e.v a8, nan_frane
s

Jsr _5wap_screens
jnove the man left and right
jhove the nan up and dawn
;antmate the nan.

5 nove all th

oy Jse _nave_all
_nan_anin

This is the main loop of the program, held in the file dis-
play.s. Be cautious about changing this area of code, as
the results can be very far reaching.

Here are the dot lavels. Study the notes on the right
very dosely before you alter anything of the code.
Assembling the changes should help understanding.

These are the equates in Move.s that can be altered to
give different movement characteristics to the main
sprite. Feel free to experiment.

