ĐĎॹá>ţ˙ ›ţ˙˙˙™š˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ěĽÁ7 ůż¤&bjbjUU Ź`7|7|y"'˙˙˙˙˙˙lffffÚÚÚDŕŕŕ€`$„œýšÎ,d"˛˛˛Í‚O,{|š~š~š~š~š~š~š$˜ 랆˘šÚ“ÉÍ““˘še#ff˛˛ˇše#e#e#“šfR˛Ú˛|še#“|še#‚e#ç'˛H¸"Ú™˛  P˘”¨ÇÂŕ- ú\“n™|͚0ýšĘ“6qŸ'!>qŸ™e#ffffŮ Algebra 1 Curriculum November 7, 2006 Mathematics Department Table of Contents TOC \f  Syllabus  PAGEREF _Toc148245026 \h 3 Philosophy  PAGEREF _Toc148245027 \h 5 Content Standards  PAGEREF _Toc148245028 \h 6  Syllabus TC "Syllabus" \f C \l "1"  Name of Course: Algebra 1/MC 9 Grade Levels: 9-12 Department: Mathematics Length & Credit:  FORMDROPDOWN ,  FORMDROPDOWN  credit Prerequisites: None General Description: This Algebra 1 course incorporates a unified approach that blends traditional mathematical topics around common thematic threads. While algebra is the focus of the course, other topics such as geometry, probability, discrete mathematics, and statistics are included. Technology is integrated into the curriculum through the use of graphing calculators and computers. Topics will include but are not limited to the following: Review Topics (number line, absolute value, operations with rational numbers, percents) Statistics Introduction to Algebra Algebra of Straight Lines Graphical Estimation Functions* *If time allows School Wide Rubrics Used: Mathematics School-Wide Rubric Recommended Text: Berlinghoff, William P., et. al., Math Connections 1a and 1b. Armonk, NY: It’s About Time, 2000. Software: Geometer’s Sketchpad, Spreadsheet Course Sequence: Review Topics (number line, absolute value, operations with rational numbers, percents) Finding the Mean (Mode) Another Center: The Median Abbreviations All Around Us Algebra is Abbreviations 1-Step Equations 2-Step Equations Laws of Algebra Solving Equations Exponential Growth/Decay Scientific Notation Exponents Coordinate System Set Builder Notation Slope Linear Equations Scattergrams/scatter plots Extrapolation/Interpolation/Forecasting with/without graphing calculator Functions* *If time allows Mathematics Education Philosophy TC "Philosophy" \f C \l "1"  The mathematics program at AHS attempts to prepare the student for active participation in a complex and ever-changing society. In order to accomplish this, the Mathematics Department believes that the student must be actively involved in the processes of reasoning, problem solving, communicating, computing, and estimating. Our students will be expected to show proficiency in each of these major areas. The student should be able to: Communicate information to others in the language of mathematics using mathematical models, graphs, pictures, and symbols; Collect, organize, and analyze raw data in order to make predictions, to make inferences, and to draw reasonable conclusions; Use inductive reasoning to formulate mathematical hypotheses and deductive reasoning to justify those hypotheses; Choose appropriate methods for solving numerical, algebraic, and geometric problems; Use the tools of technology to accomplish the above objectives; Demonstrate an understanding of individual rights, roles, and responsibilities in their community; Develop personal goals for further education and/or vocational planning.  TC "Content Standards" \f C \l "1" PROGRAM AREA: Mathematics CONTENT AREA: Algebra 1/MC 9 Educational experiences in the 9-12 Algebra 1/MC 9 program will assure that students attain the performance standards and learning outcomes listed below: Basic text resources: Berlinghoff, William P., et. al., Math Connections 1a and 1b. Armonk, NY: It’s About Time, 2000. PERFORMANCE STANDARDSENDURING UNDERSTANDINGESSENTIAL QUESTIONSASSESSMENT1. Algebraic Reasoning: Patterns and Functions Patterns and functional relationships can be represented and analyzed using a variety of strategies, tools and technologies.Students should understand, describe, and generalize patterns and functional relationships. (1.1) Students should model real-world situations and make generalizations about mathematical relationships using a variety of patterns and functions.(1.1) Students should represent and analyze linear relationships symbolically and with tables and graphs. (1.2) Students should relate the behavior of functions and relations to specific parameters and determine functions to model real-world situations. (1.2) Students should use operations, properties and algebraic symbols to determine equivalence and solve problems containing equations. (1.3) What are the properties of linear functions? What is the graph of a linear function? What is the equation for a given line? What are the slope, x-intercept, and y-intercept and what do they mean? What is the algorithm to solving a linear equation? What is the algebraic sentence for the word problem? What is the simplified form of a given equation? What is the domain and range of a given relation/function? What are the effects of changing the parameters on a linear equation? How can linear functions be evaluated and interpreted? Which of the four main operations are commutative? Class participation Homework assignments Lesson quizzes Notebooks/Binders Project(s) Tests Time FrameTeachers will review the required material and make appropriate choices as to the time spent on each performance standard and objective. This should be reinforced throughout the year. (20-24 weeks)   TC "Content Standards" \f C \l "1" PROGRAM AREA: Mathematics CONTENT AREA: Algebra 1/MC 9 Educational experiences in the 9-12 Algebra 1/MC 9 program will assure that students attain the performance standards and learning outcomes listed below: Basic text resources: Berlinghoff, William P., et. al., Math Connections 1a and 1b. Armonk, NY: It’s About Time, 2000. PERFORMANCE STANDARDSENDURING UNDERSTANDINGESSENTIAL QUESTIONSASSESSMENT2. Numerical and Proportional Reasoning: Quantitative relationships can be expressed numerically in multiple ways in order to make connections and simplify calculations using a variety of strategies, tools and technologies.Students should understand that a variety of numerical representations could be used to describe quantitative relationships. (2.1) Students should extend the understanding of numbers to include integers, rational numbers, and real numbers. (2.1) Students should interpret and represent large sets of numbers with the aid of technologies. (2.1) Students should use numbers and their properties to compute flexibly and fluently, and to reasonably estimate measures and quantities. (2.2) Students should develop strategies for computation and estimation using properties of number systems to solve problems. (2.2) Students should investigate mathematical properties and operations related to objects that are not numbers. (2.2) What are real numbers? What are integers? What are rational numbers? What is the appropriate form of number to solve practical problems? What is an appropriate method for solving a problem? What is the number in scientific notation? Is this a reasonable estimate for this answer? How is the graphing calculator best utilized to organize and analyze large amounts of data? Class participation Homework assignments Lesson quizzes Notebooks/Binders Project(s) Tests Time FrameTeachers will review the required material and make appropriate choices as to the time spent on each performance standard and objective. This should be reinforced throughout the year. (8-10 weeks)   TC "Content Standards" \f C \l "1"   TC "Content Standards" \f C \l "1" PROGRAM AREA: Mathematics CONTENT AREA: Algebra 1/MC 9 Educational experiences in the 9-12 Algebra 1/MC 9 program will assure that students attain the performance standards and learning outcomes listed below: Basic text resources: Berlinghoff, William P., et. al., Math Connections 1a and 1b. Armonk, NY: It’s About Time, 2000. PERFORMANCE STANDARDSENDURING UNDERSTANDINGESSENTIAL QUESTIONSASSESSMENT4. Working with Data: Probability and Statistics: Data can be analyzed to make informed decisions using a variety of strategies, tools, and techniques.Students should collect, organize, and display data using appropriate visual, statistical, and graphical methods. (4.1) Students should analyze data sets including real world problems to form hypotheses and make predictions. (4.2) Is a linear graph appropriate to represent the data? What scale should be used for the graph? What is the estimate of the unknown value between the data points and the graph? Are the estimates reasonable or false? What are the measures of central tendency of a set of data? Class participation Homework assignments Lesson quizzes Notebooks/Binders Project(s) Tests Time FrameTeachers will review the required material and make appropriate choices as to the time spent on each performance standard and objective. This should be reinforced throughout the year. (4-6 weeks)  TC "Content Standards" \f C \l "1"      PAGE  PAGE 2 !12IJ\]efgpq‹ŒŽ›œśˇ¸šşÍÎčéęëěíîđńýú÷îĺîŘîŘî˚ˤš‘šËšË|š‘šËšËgš‘šËŘýî(jú6;CJOJQJU]aJ(j}6;CJOJQJU]aJ$6;CJOJQJ]aJmHnHu(j6;CJOJQJU]aJ"j6;CJOJQJU]aJ6;CJOJQJ]aJj56CJU\]56CJ0\]56CJ\]CJ0CJHCJ$ !23Kgťíďńňúúúúúúúúúúúúúúúřúďéééăáßú à Æ$ $ Ća$$a$y& &Ł&ýýýńňúű'89FGKMXYefv‰Š˜™šœŤŹ­ľśÄÍáTŽUoŽ˘ÄŢ  2 F Ÿ  ) K ? @ A C E f ÷îßÝÓÝßîÍÇŔźźŔźźŔźˇŻˇˇ§ˇźŔŔŔŔŔŁžŁŔŁŔœœœ—Ŕ“6] 6\]\ >*\]\]j!UjwU jU5\ 56\] 5CJ\ 6CJ]56CJ\]j56CJU\]56CJ\]56CJ\]989LMefľśĚÍSTŽçň $9DTUoŽňđććććććććććđđÜÜÜÜÜÜÜđÖđ ĆŕŔ! „Đ„0ý^„Đ`„0ý „@ „Ŕô^„@ `„Ŕô $&dPĆ˙a$˘   2 3 F Ÿ ˇ Ň î   ) 9 K d x ‚ ” Š Ż Ŕ Ű $ / ? @ ýýýýýýýýýýýýóóýýýýýóóóóóóóóý „Đ„0ý^„Đ`„0ý@ A B C D E † ‡ ! @ A ź ˝ ;<ŽŻEFŠŞóôýýýřýîéýřýăŢýŢýŢýŢýŢýŢýŢé & F4 ĆŕŔ!$a$ &dPĆ˙$a$f g l v „ … † óôőö÷řWň +Elnťżë—˘jklno“”Îi€˘źăĺ26[ÁĚ“ — ™ š ž ż Á  ć ç !!ź!Ó!ő!"6"8"…"‰"¸"|%‡%M&Q&R&öôďôöëâßâŐôŐëëŃĚŃĆëšłšŐôŐëëŃĚŃĆëššŐôŐŐôŐëëŃĚŃĆëšš OJQJ\5;CJOJQJ\aJ 5CJ\ >*\]\]j5U\CJ56CJ\]5\ 6]j6U]Fôőö÷Wńňlmn„›ŻşúőúóóóńëńĺÜÜÜ $$Ifa$$If ĆŕŔ!$a$$a$ şťhËaË_čéipcYYYYYO „h$If^„h & F$If$If–$$If–lÖÖ\”˙\ l|)Œ7Č Ö0˙˙˙˙˙˙öř76ööÖ˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙4Ö laöé>e­áG‚Č˙2345J_oŒ“”•őőőőőőőőőőőďĺďŃŃŃŃŃżĺĺ & F Ć„°$If^„° & F Ć ŕŔ!„°$If^„° „h$If^„h$If & F$If•–—˘ô^0U $$Ifa$–$$If–lÖÖ\”˙\ l|)Œ7Č Ö0˙˙˙˙˙˙öř76ööÖ˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙4Ö laö  ĆŕŔ!$If˘ŁklmÎhiăäĺű&1˘(œ“˘‘‘‘‰œ“““ ĆŕŔ! $$Ifa$$If]$$If–lÖÖ”˙Œ7ř7Ö0˙˙˙˙˙˙öř76ööÖ˙Ö˙Ö˙Ö˙4Ö laö12— lůwéęi<cYYYYYYO „h$If^„h & F$If$If–$$If–lÖÖ\”˙\ l|)Œ7Č Ö0˙˙˙˙˙˙öř76ööÖ˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙4Ö laö ę/s¨Ó^_t‰™Ťś˝žżŔőőőőőőőőë×××××Ĺëëş  ĆŕŔ!$If & F Ć„°$If^„° & F Ć ŕŔ!„°$If^„° „h$If^„h & F$IfŔÁĚi0` $$Ifa$–$$If–lÖÖ\”˙\ l|)Œ7Č Ö0˙˙˙˙˙˙öř76ööÖ˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙4Ö laöĚÍ” • – — ˜ ˘,œ“““˘  $$Ifa$$If]$$If–lÖÖ”˙Œ7ř7Ö0˙˙˙˙˙˙öř76ööÖ˙Ö˙Ö˙Ö˙4Ö laö˜ Ŕ !!ť!ź!6"7"8"N"e"iggge_eYP $$Ifa$$If ĆŕŔ!–$$If–lÖÖ\”˙\ l|)Œ7Č Ö0˙˙˙˙˙˙öř76ööř7Ö˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙4Ö laö e"y"„"…"#—#$$öö`Ü ZPPF „h$If^„h & F!$If$If–$$If–lÖÖ\”˙\ l|)Œ7Č Ö0˙˙˙˙˙˙öř76ööÖ˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙4Ö laö $$Ifa$$<$e$ś$Ý$%%/%D%T%f%q%x%y%z%{%őőőőőë×××××Ĺëëş  ĆŕŔ!$If & F Ć„°$If^„° & F Ć ŕŔ!„°$If^„° „h$If^„h & F$If{%|%‡%i0` $$Ifa$–$$If–lÖÖ\”˙\ l|)Œ7Č Ö0˙˙˙˙˙˙öř76ööÖ˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙Ö˙˙˙˙4Ö laö‡%ˆ%N&O&P&Q&R&y&{&|&~&&&‚&„&…&†&˘(œ“““˘‘Š$a$ $$Ifa$$If]$$If–lÖÖ”˙Œ7ř7Ö0˙˙˙˙˙˙öř76ööÖ˙Ö˙Ö˙Ö˙4Ö laöR&S&w&x&y&z&|&}&&€&‚&ƒ&‡&ˆ&Ž&&&’&“&™&š&›&œ&&¤&öôöďďďďčĺčĺčĺčÝčĺ0JmHnHu0J j0JU jUj5U\†&‡&&‘&’&&ž&Ÿ& &Ą&˘&Ł&¤&ýôîýôĺýýýýýă$„h]„ha$„h]„h„ř˙„&`#$ / 0&P1h°Đ/ °ŕ=!° "° #°$`%°0ň$' 0&P1h°Đ/ °ŕ=!° "° #°$`%°' 0&P1h°Đ/ °ŕ=!° "° #°$`%°'&P1h0°ŕ= °Đ/!°‹"°°# $8%°}DĐÉęyůşÎŒ‚ŞKŠ _Toc148245026}DĐÉęyůşÎŒ‚ŞKŠ _Toc148245027}DĐÉęyůşÎŒ‚ŞKŠ _Toc148245028ŞD˙˙˙˙f€ Dropdown1˙˙ Full Year 1 SemesterŒD˙˙˙˙f€ Dropdown2˙˙11/2" i8@ń˙8 NormalCJ_HaJmH sH tH <@< Heading 1$@&56CJ\]22 Heading 2$@&5\B@B Heading 3$$@&a$56CJ\]<< Heading 4$$@&a$ 5CJ,\<A@ň˙Ą< Default Paragraph Font@>@ň@ Title$&dPĆ˙a$ 5CJ\,@, Header  ĆŕŔ!NRN Body Text Indent 2„h„Ĺ&P#$/„´^„h<C"< Body Text Indent „h^„hNS2N Body Text Indent 3„Đ„&P#$/„´^„Đ,BB, Body Text$a$&)@˘Q& Page Number, @b, Footer  ĆŕŔ!8@8 TOC 1¤h5;OJQJ\aJ(( TOC 2¤đ5\&& TOC 3 „đ^„đ&& TOC 4 „ŕ^„ŕ&& TOC 5 „Đ^„Đ&& TOC 6 „Ŕ^„Ŕ&& TOC 7 „°^„°&& TOC 8 „ ^„ && TOC 9 „^„.U@˘. Hyperlink >*B*ph˙RYR  Document Map!-D MĆ ˙€CJOJQJ^JaJ¤"˙˙˙˙˙˙˙˙˙˙˙˙˙˙ňô ÷ ¤" `˙˙˙˙ 1`˙˙˙˙ Z`˙˙˙˙ ƒ`˙˙˙˙ !23Kgťíďńň89LMefľśĚÍSTŽçň $9DTUoŽ˘23FŸˇŇî)9Kdx‚”ŠŻŔŰ$/?@ABCDE†‡ ! @ A ź ˝ ; < Ž Ż   E F Š Ş ó ô ő ö ÷ W ń ň l m n „ › Ż ş ť hËaË_čé>e­áG‚Č˙2345J_oŒ“”•–—˘ŁklmÎhiăäĺű&12— lůwéę/s¨Ó^_t‰™Ťś˝žżŔÁĚÍ”•–—˜Ŕ!ťź678Ney„…—  < e ś Ý !!/!D!T!f!q!x!y!z!{!|!‡!ˆ!N"O"P"Q"R"y"{"~""„"†"‡""‘"’""ž"Ÿ" "Ą"˘"Ľ"˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€˜0€€(0€€˜0€2˜0€2˜0€€˜0€€˜0€€˜0€2˜0€2`0€€˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜4 0€ń˜0€ń˜4 0€ń˜0€ń˜4 0€ń˜0€ń˜4 0€ń˜0€ń˜4 0€ń˜0€ń˜4 0€ń˜0€ń˜4 0€ń˜`0€ń˜0€ń˜0€ń˜`0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ńŠ0€ńŠ0€ńŠ0€ńŠ0€ń™0€ńŠ0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0 €ńŠ 0 €ńŠ0€ńŠ0€ńŠ0€ńŠ 0 €ńŠ 0 €ńŠ 0 €ńŠ 0€ńŠ 0€ńŠ 0€ńŠ0€ńŠ0€ńŠ0€ń™0€ńŠ0€ń™0€ńŠ0€ńŠ0€ń™0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ńŠ0€ńŠ0€ńŠ0€ńŠ0€ń™0€ńŠ0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ 0€ńŠ0€ńŠ0€ńŠ0€ń™0€ńŠ0€ń™0€ńŠ0€ńŠ0€ńŠ0€ńŠ0€ń™0€ń™0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ń˜0€ńŠ0€ńŠ0€ńŠ0€ńŠ0€ń™0€ńŠ0€ńŠ! 0€ńŠ! 0€ńŠ0€ńŠ 0€ńŠ 0 €ńŠ 0!€ńŠ 0"€ńŠ 0#€ńŠ0€ńŠ 0$€ńŠ 0%€ńŠ 0&€ńŠ 0'€ńŠ 0(€ńŠ 0)€ńŠ0€ńŠ0€ńŠ0€ń™0€ńŠ0€ń™0€ńŠ0€ńŠ0€ńŠ0€ńŠ0€ń™0€ń˜0€€š@0€€š@0€€š@0€€š@0€€š@0€€š@0€€š@0€€š@0€€š@0€€˜@0€€˜@0€€š@0€€ 0š0€€š0€€š€€ &&&&&&&&&&&&&&&&&&&&&)ńf R&¤&.@ ôşé•˘1ęŔĚ˜ e"${%‡%†&¤& !"#$%&'()*+,-/Ł&\epŒŽ›ˇšÍéë퉙œŹ¤" ˙%˙•Ŕ%˙•Ŕ%˙•Ŕ•ŒS• S•  ")!•!t˙•€đlđđ,2đ$CŻAĎŞ;uíâ‡?HƒÍ—=˙đ_˙˙˙˙j@ń˙˙˙€€€÷đšđđ0đ( đ đđB đS đżË˙ ?đđ¤"˙˙ _Toc148245026 Dropdown1 Dropdown2 _Toc148245027 _Toc148245028Šlý Ľ"š­v Ľ"˘­ŔĚ  €‹ÓŢy"y"{"{"|"|"~"""‚"„"…"Ÿ" "Ľ"u‰ť˝żÁŠ ‘ " $ & ( Z\™›ŸT[ěîđňy"y"{"{"|"|"~"""‚"„"…"Ÿ" "Ľ"3333333333333p›şÍ쉚œ­ŕŕĎ×ßßEE‚‚ˇĆÖÖ××˙˙22^^_`ackkňöwwâč//^^ˆŒżżŔŔ     $ !!ˆ!ˆ!C"F"P"P"R"R"x"x"y"y"{"{"|"|"~"""‚"„"…"‡""’"œ"Ľ"˙˙ cfinlaysonrC:\Documents and Settings\cfinlayson\Application Data\Microsoft\Word\AutoRecovery save of Algebra 1 Curriculum.asd cfinlayson,S:\Mathematics Dept\Algebra 1 Curriculum.dot cfinlayson,S:\Mathematics Dept\Algebra 1 Curriculum.dot cfinlayson,S:\Mathematics Dept\Algebra 1 Curriculum.dot cfinlayson,S:\Mathematics Dept\Algebra 1 Curriculum.dot cfinlayson,S:\Mathematics Dept\Algebra 1 Curriculum.dot cfinlayson,S:\Mathematics Dept\Algebra 1 Curriculum.dot cfinlayson,S:\Mathematics Dept\Algebra 1 Curriculum.dot cfinlayson,S:\Mathematics Dept\Algebra 1 Curriculum.dot4|˙˙˙‚ž°˙˙˙˙˙˙˙˙˙}˙˙˙ěúf˙˙˙˙˙˙˙˙˙~˙˙˙Îhćj˙˙˙˙˙˙˙˙˙˙˙˙(Ž[˙˙˙˙˙˙˙˙˙€˙˙˙̃f˙˙˙˙˙˙˙˙˙˙˙˙š“„N˙˙˙˙˙˙˙˙˙‚˙˙˙ÎŇC˙˙˙˙˙˙˙˙˙ƒ˙˙˙Ž~ž˙˙˙˙˙˙˙˙˙ˆ˙˙˙ĆtĚz˙˙˙˙˙˙˙˙˙‰˙˙˙*Šž0˙˙˙˙˙˙˙˙˙WHńj7şě˙˙˙˙˙˙˙˙˙đdŘ&B†O˙˙˙˙˙˙˙˙˙uWjZvţ˙˙˙˙˙˙˙˙˙:ྀ ˙˙˙˙˙˙˙˙˙‰Oؒ`J˙˙˙˙˙˙˙˙˙šjä:˙˙˙˙˙˙˙˙˙xBŻ ŕž€ ˙˙˙˙˙˙˙˙˙ßč ůŒj˙˙˙˙˙˙˙˙˙~GKŞś˙˙˙˙˙˙˙˙˙ĘRZvţ˙˙˙˙˙˙˙˙˙íN’şH˙˙˙˙˙˙˙˙˙ŕdq¨cÎ!˙˙˙˙˙˙˙˙˙1+I!éÚR˙˙˙˙˙˙˙˙˙ƒ^Ż"‚¨p˙˙˙˙˙˙˙˙˙tg&f¨d-˙˙˙˙˙˙˙˙˙1ö3ؒ`J˙˙˙˙˙˙˙˙˙Ő 5/^œ˙˙˙˙˙˙˙˙˙´"ź5‚¨p˙˙˙˙˙˙˙˙˙Ń-ä9ԒčK˙˙˙˙˙˙˙˙˙!^Ř<ŇŤbó˙˙˙˙˙˙˙˙˙k#LúŞ~\˙˙˙˙˙˙˙˙˙íeqVؒ`J˙˙˙˙˙˙˙˙˙Qű[ ~˙˙˙˙˙˙˙˙˙Ę-u\đ‹–´˙˙˙˙˙˙˙˙˙ Ś\ŇŤbó˙˙˙˙˙˙˙˙˙!e^ŕľôÂ˙˙˙˙˙˙˙˙˙Rwk^lxȨ˙˙˙˙˙˙˙˙˙Qcéa6Đđ˙˙˙˙˙˙˙˙˙§ibNŕŒź˙˙˙˙˙˙˙˙˙Ň?cTýžE˙˙˙˙˙˙˙˙˙ŕ?{fXâ6\˙˙˙˙˙˙˙˙˙—FgŕľôÂ˙˙˙˙˙˙˙˙˙f~ŠgžaŞŇ˙˙˙˙˙˙˙˙˙×6kúޚ-˙˙˙˙˙˙˙˙˙-Ökúޚ-˙˙˙˙˙˙˙˙˙ˇzoj7şě˙˙˙˙˙˙˙˙˙E}Qu6Ŕ`˙˙˙˙˙˙˙˙˙ť8uԒčK˙˙˙˙˙˙˙˙˙R‰uxđ°˙˙˙˙˙˙˙˙˙€ Ň{žŠčg˙˙˙˙˙˙˙˙˙ĚS3}&ľ4˙˙˙˙˙˙˙˙˙7%°}ňŐP%˙˙˙˙˙˙˙˙˙„„˜ţĆ^„`„˜ţ.„ „˜ţĆ ^„ `„˜ţ.„8„˜ţĆ8^„8`„˜ţ.„Đ„˜ţĆĐ^„Đ`„˜ţ. „„˜ţĆ^„`„˜ţOJQJo(ˇđ „ „˜ţĆ ^„ `„˜ţOJQJo(ˇđ „8„˜ţĆ8^„8`„˜ţOJQJo(ˇđ „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(ˇđ„h„˜ţĆh^„h`„˜ţ. „h„˜ţĆh^„h`„˜ţOJQJo(ˇđh„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.’h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.’h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.’h „P„L˙ĆP^„P`„L˙‡hˆH.h „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(ˇđh „ „˜ţĆ ^„ `„˜ţOJQJo(oh „p„˜ţĆp^„p`„˜ţOJQJo(§đh „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđh „„˜ţĆ^„`„˜ţOJQJo(oh „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đh „°„˜ţư^„°`„˜ţOJQJo(ˇđh „€„˜ţĆ€^„€`„˜ţOJQJo(oh „P„˜ţĆP^„P`„˜ţOJQJo(§đh„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.’h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.’h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.’h „P„L˙ĆP^„P`„L˙‡hˆH.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.’h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.’h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.’h „P„L˙ĆP^„P`„L˙‡hˆH.h „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(ˇđh „ „˜ţĆ ^„ `„˜ţOJQJo(ˇđ‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţư^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(ˇđh„ě„L˙Ćě^„ě`„L˙.h„ě„L˙Ćě^„ě`„L˙.h „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđ„„˜ţĆ^„`„˜ţo(.h „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đh „°„˜ţư^„°`„˜ţOJQJo(ˇđh „€„˜ţĆ€^„€`„˜ţOJQJo(oh „P„˜ţĆP^„P`„˜ţOJQJo(§đh„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.h „P„L˙ĆP^„P`„L˙‡hˆH.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h„ „˜ţĆ ^„ `„˜ţ.’h„p„L˙Ćp^„p`„L˙.h„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţ.’h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţư^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.h „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(ˇđh „ „˜ţĆ ^„ `„˜ţOJQJo(oh „p„˜ţĆp^„p`„˜ţOJQJo(§đh „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđh „„˜ţĆ^„`„˜ţOJQJo(oh „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đh „°„˜ţư^„°`„˜ţOJQJo(ˇđh „€„˜ţĆ€^„€`„˜ţOJQJo(oh „P„˜ţĆP^„P`„˜ţOJQJo(§đh„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.h „P„L˙ĆP^„P`„L˙‡hˆH.h„ „˜ţĆ ^„ `„˜ţCJOJQJo(qđh „p„˜ţĆp^„p`„˜ţOJQJo(oh „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(§đh „„˜ţĆ^„`„˜ţOJQJo(ˇđh „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(oh „°„˜ţư^„°`„˜ţOJQJo(§đh „€„˜ţĆ€^„€`„˜ţOJQJo(ˇđh „P„˜ţĆP^„P`„˜ţOJQJo(oh „ „˜ţĆ ^„ `„˜ţOJQJo(§đ„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţư^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h„ „˜ţĆ ^„ `„˜ţ.’h„p„L˙Ćp^„p`„L˙.h„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţ.’h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţư^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.h „P„L˙ĆP^„P`„L˙‡hˆH.h „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(ˇđh „ „˜ţĆ ^„ `„˜ţOJQJo(ˇđ„Œ „0ýĆŒ ^„Œ `„0ýo(.Ř „@ „˜ţĆ@ ^„@ `„˜ţo(.„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţư^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţOJQJo(ˇđ„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţ.„„˜ţĆ^„`„˜ţ.„ŕ„L˙Ćŕ^„ŕ`„L˙.„°„˜ţư^„°`„˜ţ.„€„˜ţĆ€^„€`„˜ţ.„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(‡hˆHˇđh„ „˜ţĆ ^„ `„˜ţOJQJ^Jo(‡hˆHoh„p„˜ţĆp^„p`„˜ţOJQJo(‡hˆH§đh„@ „˜ţĆ@ ^„@ `„˜ţOJQJo(‡hˆHˇđh„„˜ţĆ^„`„˜ţOJQJ^Jo(‡hˆHoh„ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(‡hˆH§đh„°„˜ţư^„°`„˜ţOJQJo(‡hˆHˇđh„€„˜ţĆ€^„€`„˜ţOJQJ^Jo(‡hˆHoh„P„˜ţĆP^„P`„˜ţOJQJo(‡hˆH§đh„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.’h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.’h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.’h „P„L˙ĆP^„P`„L˙‡hˆH.h „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(ˇđh „ „˜ţĆ ^„ `„˜ţOJQJo(oh „p„˜ţĆp^„p`„˜ţOJQJo(§đh „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđh „„˜ţĆ^„`„˜ţOJQJo(oh „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đh „°„˜ţư^„°`„˜ţOJQJo(ˇđh „€„˜ţĆ€^„€`„˜ţOJQJo(oh „P„˜ţĆP^„P`„˜ţOJQJo(§đh„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.h „P„L˙ĆP^„P`„L˙‡hˆH.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţư^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţOJQJo(ˇđ‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţư^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.€„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţư^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(ˇđh „Ŕ„xýĆŔ^„Ŕ`„xýOJQJo(ˇđh „p„˜ţĆp^„p`„˜ţOJQJo(§đh „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđh „„˜ţĆ^„`„˜ţOJQJo(oh „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đh „°„˜ţư^„°`„˜ţOJQJo(ˇđh „€„˜ţĆ€^„€`„˜ţOJQJo(oh „P„˜ţĆP^„P`„˜ţOJQJo(§đh„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.’h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.’h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.’h „P„L˙ĆP^„P`„L˙‡hˆH.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.h „P„L˙ĆP^„P`„L˙‡hˆH.h„ „˜ţĆ ^„ `„˜ţCJOJQJo(qđh „p„˜ţĆp^„p`„˜ţOJQJo(oh „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(§đh „„˜ţĆ^„`„˜ţOJQJo(ˇđh „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(oh „°„˜ţư^„°`„˜ţOJQJo(§đh „€„˜ţĆ€^„€`„˜ţOJQJo(ˇđh „P„˜ţĆP^„P`„˜ţOJQJo(oh „ „˜ţĆ ^„ `„˜ţOJQJo(§đ„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţư^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h„ „˜ţĆ ^„ `„˜ţ.’h„p„L˙Ćp^„p`„L˙.h„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţ.’h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţư^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.’h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.’h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.’h „P„L˙ĆP^„P`„L˙‡hˆH.h „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(ˇđh „ „˜ţĆ ^„ `„˜ţOJQJo(oh „p„˜ţĆp^„p`„˜ţOJQJo(§đh „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđh „„˜ţĆ^„`„˜ţOJQJo(oh „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đh „°„˜ţư^„°`„˜ţOJQJo(ˇđh „€„˜ţĆ€^„€`„˜ţOJQJo(oh „P„˜ţĆP^„P`„˜ţOJQJo(§đh„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.’h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.’h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.’h „P„L˙ĆP^„P`„L˙‡hˆH.h„Đ„˜ţĆĐ^„Đ`„˜ţ.h„ „˜ţĆ ^„ `„˜ţ.’h„p„L˙Ćp^„p`„L˙.h„@ „˜ţĆ@ ^„@ `„˜ţ.h„„˜ţĆ^„`„˜ţ.’h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţư^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(‡hˆHoh„ „˜ţĆ ^„ `„˜ţOJQJ^Jo(‡hˆHoh„p„˜ţĆp^„p`„˜ţOJQJo(‡hˆH§đh„@ „˜ţĆ@ ^„@ `„˜ţOJQJo(‡hˆHˇđh„„˜ţĆ^„`„˜ţOJQJ^Jo(‡hˆHoh„ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(‡hˆH§đh„°„˜ţư^„°`„˜ţOJQJo(‡hˆHˇđh„€„˜ţĆ€^„€`„˜ţOJQJ^Jo(‡hˆHoh„P„˜ţĆP^„P`„˜ţOJQJo(‡hˆH§đh„Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(‡hˆHoh„ „˜ţĆ ^„ `„˜ţOJQJ^Jo(‡hˆHoh„p„˜ţĆp^„p`„˜ţOJQJo(‡hˆH§đh„@ „˜ţĆ@ ^„@ `„˜ţOJQJo(‡hˆHˇđh„„˜ţĆ^„`„˜ţOJQJ^Jo(‡hˆHoh„ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(‡hˆH§đh„°„˜ţư^„°`„˜ţOJQJo(‡hˆHˇđh„€„˜ţĆ€^„€`„˜ţOJQJ^Jo(‡hˆHoh„P„˜ţĆP^„P`„˜ţOJQJo(‡hˆH§đh„Đ„˜ţĆĐ^„Đ`„˜ţ.h „ „˜ţĆ ^„ `„˜ţ‡hˆH.h „p„L˙Ćp^„p`„L˙‡hˆH.h „@ „˜ţĆ@ ^„@ `„˜ţ‡hˆH.h „„˜ţĆ^„`„˜ţ‡hˆH.h „ŕ„L˙Ćŕ^„ŕ`„L˙‡hˆH.h „°„˜ţư^„°`„˜ţ‡hˆH.h „€„˜ţĆ€^„€`„˜ţ‡hˆH.h „P„L˙ĆP^„P`„L˙‡hˆH.h „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(ˇđh„ „˜ţĆ ^„ `„˜ţ.h „p„˜ţĆp^„p`„˜ţOJQJo(§đh „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđh „„˜ţĆ^„`„˜ţOJQJo(oh „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đh „°„˜ţư^„°`„˜ţOJQJo(ˇđh „€„˜ţĆ€^„€`„˜ţOJQJo(oh „P„˜ţĆP^„P`„˜ţOJQJo(§đh „Đ„˜ţĆĐ^„Đ`„˜ţOJQJo(vđh „ „˜ţĆ ^„ `„˜ţOJQJo(oh „p„˜ţĆp^„p`„˜ţOJQJo(§đh „@ „˜ţĆ@ ^„@ `„˜ţOJQJo(ˇđh „„˜ţĆ^„`„˜ţOJQJo(oh „ŕ„˜ţĆŕ^„ŕ`„˜ţOJQJo(§đh „°„˜ţư^„°`„˜ţOJQJo(ˇđh „€„˜ţĆ€^„€`„˜ţOJQJo(oh „P„˜ţĆP^„P`„˜ţOJQJo(§đh„Đ„˜ţĆĐ^„Đ`„˜ţ.„ „˜ţĆ ^„ `„˜ţo(.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţư^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.h„Đ„˜ţĆĐ^„Đ`„˜ţ.„„0ýĆ^„`„0ýo(.h„p„L˙Ćp^„p`„L˙.„@ „˜ţĆ@ ^„@ `„˜ţo(.h„„˜ţĆ^„`„˜ţ.’h„ŕ„L˙Ćŕ^„ŕ`„L˙.h„°„˜ţư^„°`„˜ţ.h„€„˜ţĆ€^„€`„˜ţ.’h„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţư^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.„Đ„˜ţĆĐ^„Đ`„˜ţo(.h„ „˜ţĆ ^„ `„˜ţ.‚„p„L˙Ćp^„p`„L˙.€„@ „˜ţĆ@ ^„@ `„˜ţ.€„„˜ţĆ^„`„˜ţ.‚„ŕ„L˙Ćŕ^„ŕ`„L˙.€„°„˜ţư^„°`„˜ţ.€„€„˜ţĆ€^„€`„˜ţ.‚„P„L˙ĆP^„P`„L˙.4ť8uŃ-ä9ŕ?{fíeqVE}Qutg&‰OQű[R‰uđdŘĚS3}7%°}Qcéaŕdqk#Lf~Šg1+I!ßč€ Ň{§ibšj~GRwk^íN’×6k-ÖkŐ 5‹1ö3 Ś\!^Ř<—Fg!e^WHńˇzo:xBŻ ´"ź5ƒ^Ż"uWjĘRŇ?c‰˙˙˙ƒ˙˙˙‚˙˙˙˙˙˙€˙˙˙ˆ˙˙˙˙˙˙~˙˙˙}˙˙˙|˙˙˙Ę-u\˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙4˙˙4                                                 ؓ〠                                                  ě ŠMfťr                                                            \,Ś˝                                                                                                           Ž :Î         ×>  Đłđ                       n „ › Ż ş ť hé5–—˘Łlmĺű&12ę_ŔÁĚÍ—˜Ŕ8Ney„… !{!|!‡!ˆ!Q"R"Ľ"žžž–žžžž–žžž–˙@ €|!|!° J|!|!ä*Œ7¤"@˙˙Unknown˙˙˙˙˙˙˙˙˙˙˙˙G‡z €˙Times New Roman5€Symbol3& ‡z €˙Ariale‡z €˙Times New (W1)Times New Roman5& ‡za€˙Tahoma?5 ‡z €˙Courier New;€Wingdings"1ˆđĐähW;ŤFÉ;ŤFČ;ŤFGül<ě=Á"đ °´´0dç"ţ!g 2ƒQđÜHX˙˙Table of ContentsAnsonia High School cfinlaysonţ˙ŕ…ŸňůOhŤ‘+'łŮ0¨˜ źČäđü 0< X d p |ˆ˜ äTable of ContentsdablAnsonia High SchoolnsonsoAlgebra 1 Curriculum9 cfinlaysonu7inMicrosoft Word 9.0m@j(ë @jl¨Ç@ZRÁ™Ç@V-¨Çülţ˙ŐÍ՜.“—+,ůŽ0  hp˜ ¨ °¸ŔČ Đ îäAnsonia Public Schools<ç"  Table of Contents Title  !"#$%&'()*+,-./0ţ˙˙˙2345678ţ˙˙˙:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~€‚ƒ„…†‡ˆţ˙˙˙Š‹ŒŽţ˙˙˙’“”•–—˜ţ˙˙˙ý˙˙˙ý˙˙˙œţ˙˙˙ţ˙˙˙ţ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙Root Entry˙˙˙˙˙˙˙˙ ŔF@X‚”¨Çž€Data ˙˙˙˙˙˙˙˙˙˙˙˙11Table˙˙˙˙˙˙˙˙9qŸWordDocument˙˙˙˙Ź`SummaryInformation(˙˙˙˙˙˙˙˙˙˙˙˙‰DocumentSummaryInformation8˙˙˙˙˙˙˙˙‘CompObj˙˙˙˙jObjectPool˙˙˙˙˙˙˙˙˙˙˙˙@X‚”¨Ç@X‚”¨Çţ˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙˙ţ˙ ˙˙˙˙ ŔFMicrosoft Word Document MSWordDocWord.Document.8ô9˛q