Inventor: John R Shearing: Justodian†††††† (732) 406 6934



Spherical Electromagnetic Vessel Manipulates Plasma And Magnetic Objects

(figure 1)


This Invention Is Freely Given To All People.

It was invented in early June 2004 and filed as a provisional patent application.

It was presented to John Delooper of the Plasma Physics Laboratory at Princeton for evaluation on June 8 2004

It was presented to Dr. Raymond Damadian, inventor of the MRI machine on Nov 20 2004

It was first posted on this site and placed in the public domain on June 8 2006



Primarily intended for use as a plasma bottle but other uses include magnetic vise for holding quibits, ball bearing manufacture, ball bearing manipulation through non-magnetic mediums, speaker coil for generating spherical sound waves and so on.

Many magnetic bottles of previous design have the problem of flux leakage near the magnetic poles of the bottle. Attempts have been made to stop leakage by placing other magnets near the poles. Using that method, leakage persists where magnetic fields overlap. Tokamaks are torus shaped bottles that hold plasma well but have the problem of spreading it out over a large area which makes it difficult to heat and compress.

This invention proposes that the location of the poles is constantly changing. This is accomplished by varying the current running through the six interlocking coils of wire. So as the hot plasma moves near the poles to escape, that exit is closed before the plasma has a chance to reach it. The plasma now moves towards a new pole and so on around and around inside the bottle. This motion creates a secondary magnetic field within the plasma itself as it spins inside the bottle. And because the axis of spin is constantly changing, a magnetic vortex is formed pushing and pulling the plasma to the center of the bottle.

A simple demonstration of the invention would be to hook up a signal generator to 6 channels of digital delay and from there into 6 channels of amplification. Then send the amplified signals through each of the six coils of the spherical magnet. The spherical magnet will have a balloon in the center filled with water and iron particles in suspension. By adjusting with the signal and the delay, it is possible to move the iron particles about inside the spherical magnet like a school of fish. Since plasma also responds to magnetism, the implication is that plasma may be in controlled the same way.



0001†††† This document defines:

1.          A spherical electromagnetic vessel (figure 1) formed by six interlocking coils of wire.

2.          A spherical pressure/vacuum vessel (figure 9) formed by six interlocking bands of any suitable material, which can be used for surrounding the previously mentioned spherical electromagnetic vessel (figure 1).

3.          A tensegrity dodecahedron (figure 14) which can be use to support the both the spherical electromagnetic vessel (figure 1) and the spherical pressure/vacuum vessel (figure 9)

0002††† The purpose of this invention is to:

  1. Provide a spherical magnetic vessel that is capable of containing and manipulating plasma (hot ionized gas).
  2. Provide a vessel as defined above that can impart rotation to plasma, which will cause the plasma to compress and so facilitate a fusion reaction.
  3. Provide a vessel as defined above which can expel a ball of plasma to perform work or as a weapon.
  4. Provide a vessel capable of holding and positioning ferrous and magnetic objects. Uses might include but are not limited to:
    1. Holding and positioning mirrors.
    2. Holding and positioning ferrous molecules for use in quantum computers.
  5. Provide a vessel capable of holding and heating ferrous and magnetic materials via induction. Uses might include but are not limited to:
    1. Heat treating
    2. Manufacture of ball bearings
    3. Manufacture of complex shapes in ferrous and or magnetic materials by heating them to a molten state via induction and then controlling the shape of the magnetic material as it cools by varying the vessels magnetic fields.
    4. Tunneling through nonferrous materials such as plastic by heating a ball bearing via induction and then controlling itís path through the plastic by varying the magnetic fields created by the vessel.
  6. Provide a method for creating a spherical servomotor, which would have no bearings, brushes, or commutators to wear out, and which would be capable of rotating in pitch, yaw, and roll simultaneously.


0003†† ††All of the objectives listed above will be accomplished by applying various electrical currents through the six interlocking wire coils to create magnetic fields, which will work in concert to do the desired task. The application of these currents is a very complex subject and will not be treated in detail in this document. But it is interesting to note that if a balloon were placed in the center of the spherical electromagnetic vessel (figure 1) and if it was filled with some liquid such as distilled water and some iron filings, you could observe the magnetic fields in action as you make the iron filings swim like a school of fish or form a vortex inside the balloon.



0004†††† Patent 4,654,561 By J. D. Shelton describes a plasma containment device that is spherical in shape. This document gives an excellent analysis of plasma containment and shows that ball lightening, bead lightening, and sunspots are all just different forms of the same phenomena, which is spinning ionized gas or plasma. Mr. Shelton asserts that the faster we can get plasma to spin, the greater will be the magnetic force which pulls the ball tighter and compresses the plasma. The logical conclusion of this process would be a fusion reaction. The shortcoming of his patent is the method used to hold the plasma and spin it. The apparatus proposed attempts to hold a plasma ball between two magnetic poles while spinning the plasma with a jet of gas that also helps to keep the plasma from touching the walls of the containment vessel. This method falls short of attaining fusion because gas under pressure cannot cause the plasma to spin fast enough to achieve a high enough magnetic compression. Also, gas under pressure can only cause the plasma to spin in one direction at a time. This creates a spinning cylinder of plasma and not a ball, so there is flux leakage at the end of the cylindrical column of plasma.


0005†††† Patent 4,007,392 By Valfells et al. describes a plasma containment device, which uses magnetic coils located by circumscribing them along the sides of a regular polygon. There is one coil for each side. This arrangement uses magnetic force to push plasma towards the center of the polygon but does not cause any spin, which is crucial for compression of the plasma.


0006†††† Patent 5,517,083 suffers this same limitation



0007†††† Figure 1 shows a photo of the spherical magnetic vessel.

0008†††† Figure 2 shows a photo of the spherical magnetic vessel from a different angle.

0009†††† Figure 3 shows a structure created using six interlocking bands.

0010†††† Figure 4 shows a CAD Drawing of the same structure.

0011†††† Figure 5 shows front view CAD drawing of the same structure.†††

0012†††† Figure 6 shows an offset view CAD drawing of the same structure.

0013†††† Figure 7 shows the form used to create the spherical electromagnetic vessel (figure 1).


0014†††† Figure 8 shows the fixture that was used to create the windings that make up the spherical electromagnetic vessel (figure 1).


0015†††† Figure 9 is a photo showing a spherical pressure or vacuum vessel used to cover the spherical electromagnetic vessel (figure 1). This can be used to hold gases and liquid under pressure or maintain a vacuum in the presence of the magnetic field generated by the spherical electromagnetic vessel.


0016†††† Figure 10 is a drawing of the pressure/vacuum vessel (figure 9) in the process of being made.


0017†††† Figure 11 is a drawing of a pentagonal cover, which is one of the parts required to build the spherical pressure/vacuum vessel (figure 9).


0018†††† Figure 12 is a drawing of a disk shaped cover, which is another part used in the construction of the spherical pressure/vacuum vessel (figure 9).


0019†††† Figure 13 demonstrates that the cross-section of the 6 bands used to create the spherical pressure/vacuum vessel (figure 9) has a curvature defined by the swinging the radius of the vessel.


0020†††† Figure 14 is a photo of a tensegrity dodecahedron


0021†††† Figure 15 is a drawing made from the previous photograph (figure 14)


0022†††† Figure 16 is a photo showing that the struts of a tensegrity dodecahedron (figure 14) can be placed inside the spherical pressure/vacuum vessel (figure 9) and or inside the spherical electromagnetic vessel (figure 1) to give the structures more strength.


0023†††† Figure 17 is a drawing demonstrating the one to one correspondents between the vertexes of the 12 pentagonal openings in the spherical pressure/vacuum vessel (figure 9) or spherical electromagnetic vessel (figure 1) and the struts of the tensegrity dodecahedron (figure 14)


0024†††† Figure 18 is a drawing created from photo (figure 16) and serves the same purpose




0025†††† Figure 1 is a photograph showing a finished spherical electromagnetic vessel. This vessel was formed from six interlocking coils of wire. From this point on, I shall refer to the shape of this structure as a spherical dodecahedron in honor of its 12 pentagonal openings, which are spaced equidistantly around the surface of the structure.


0026†††† Figure 2 just shows the finished spherical electromagnetic vessel from a different angle.


0027†††† This structure was made by alternately winding each of six different wires around a form (figure 7), which was held in place by the fixture shown in (figure 8).


0028†††† By varying electrical current through the six interlocking coils of wire, it will be possible to create very complex magnetic fields inside the spherical electromagnetic vessel (figure 1)


0029†††† Another version of this structure could be built by using a single conductor, and varying its direction as it is wound around the form. The disadvantage would be that only a single input and output would exist as opposed to six. And this of course would limit the complexity of the magnetic fields you could create. But if you only need create a simple magnetic field, then this method might make for easier construction.


0030†††† Figure 3 shows six interlocking rings in the form of a spherical dodecahedron. This figure demonstrates how it is possible to create a pressure/vacuum vessel suitable for surrounding the inside or outside of the spherical electromagnetic vessel (figure 1).It also demonstrates one way you might build a form for holding the wires while winding your spherical electromagnetic vessel (figure 1). If you were to cut along the doted lines (figure 3), remove the top portions and weld along the seams, then you could create a nearly perfectly spherical pressure/vacuum vessel without any overlapping material.


0031†††† Figures 4,5 and 6 are CAD drawings showing the spherical dodecahedron from different angles.


0032†††† Figure 9 is a photograph of a cardboard mockup of a spherical pressure/vacuum vessel suitable for surrounding the outside and or inside of the spherical electromagnetic vessel.This spherical pressure/vacuum vessel is created using the six interlocking bands from figure 3. The width of each band is approximately 1/5th of the spheres diameter. By playing with this number, you can control how tightly the bands fit together. This structure has 12 pentagonal shaped openings and 20 points along its surface where the edges of 3 bands intersect. So this structure is also a spherical dodecahedron. Also shown in this drawing are the pentagonal covers over the 12 pentagonal openings and disk shaped covers over the 20 places where the bands intersect.


0033†††† Figure 10 is a drawing of the spherical pressure/vacuum vessel in the process of being made.


0034†††† Figures 11 and 12 are drawings of the covers used to enclose the spherical pressure/vacuum vessel (figure 9). Notice the slits used for twisting the covers into place and centering them over the openings.


0035†††† Figure 13 shows that the six interlocking rings should have a spherical cross-section to facilitate a smooth and stress free fit


0036††† Because the spherical electromagnetic vessel (figure 1) and spherical pressure/vacuum vessel (figure 9) are both the same shape, you can use the covers (Figures 11 and 12) as convenient mounting points for gas or liquid inlets and returns, vacuum pump fittings, electrical connections, and also as mounting points for lasers that can be used to excite the gas. Using these covers for laser mounts ensures that you will never be pointing the lasers at the coils of wire forming the spherical electromagnetic vessel (figure 1)


0037†††† Figure 14 is a photo showing a spherical tensegrity structure where the interplay between the 30 tension members (cables of some type) and 30 compression members (struts of some type) join to create a strong and resilient structure in the approximate shape of a sphere. This structure is referred to by those familiar in the art, as a tensegrity dodecahedron. Figure 15 shows a drawing made from photo (figure 14).


0038†††† Figures 16, 17, and 18 show how the struts of the tensegrity dodecahedron can be positioned inside the spherical dodecahedron by locating the ends of the struts with reference to the vertexes of the pentagonal openings. The other end of the struts, (shown in figure 18), are located with reference to one of the vertexes of an adjacent pentagonal opening as dictated by the form of the tensegrity dodecahedron depicted in figure 14. What we are doing in effect is placing a tensegrity dodecahedron (figure 14) inside of spherical dodecahedron (figure 9), where the struts handle compression and the bands of the spherical dodecahedron provide the tension and the spherical shape. Also, we are taking advantage of the fact that there is a one to one correspondence between the ends of the 30 struts in (figure 14) and the 60 pentagonal vertexes in figure 9. And as such, we have an easy way to locate the correct positions for attaching the end points of the struts to the spherical dodecahedron so as to form a tensegrity dodecahedron inside.


0039†††† At this point, it should be understood that the struts of the tensegrity dodecahedron (figure 14), might also be fastened inside the spherical electromagnetic vessel (figure 1) to give it physical strength as well.


0040†††† When winding the coils of the spherical electromagnetic vessel (figure 1), there is a limit to the amount of turns that may be wrapped around the form. This is because as the coils get wider, there will come a point where the coils will interfere with each other. This limitation can be overcome by winding a larger spherical electromagnetic vessel (figure 1) over the top of smaller ones. Using this method, there is no practical limit to the size of the winding that you can make.


0041†††† If smaller inner windings in the form of this invention are free to rotate inside outer windings also in the form of this invention then it should be possible to cause the inner windings and rotate about any desired axis creating a spherical electric motor without the need for brushes, commutators or any wearing parts. This might be useful as a servomotor that can spin an internal load through pitch, yaw and roll simultaneously. If the internal load were a spherical of container fluid or a plasma, then you could use this device to create a vortex with an axis of rotation that is constantly changing. This would have the effect of compressing the fluid/plasma and forcing it to the center of the container.


As this is a provisional patent, claims are not required at this time.