ÄÄ

 Welcome! In this chapter, we will cover the following commands:

 þ DIM

 þ FOR...NEXT

 þ STEP

 þ GOTO

 þ IF...THEN

 þ COLOR

 As of right now, you know about variable types, PRINT, INPUT, and

 LET. These are the most basic parts of the BASIC environment. We now

 have to move into a more complex area.

 Numbers are used in every application, no matter what kind of program

 it is. That's why variables are so important in BASIC. However, when

 dealing with large amounts of numbers and strings, hundreds of variable

 names would get too complex and unreadable. This is where ARRAYS come in.

 Think of an array as a big box in the computer's memory seperated

 by dividers into smaller boxes. You can put different things in the small

 boxes, but organize them into one big box. This is exactly what an array

 does. An array is an area in the computer's memory seperated into smaller

 parts for different variables.

 To create an array, you use the DIM command:

 DIM ArrayName$ (number)

 ArrayName is the name of the array, followed by a variable type ($,

 !, etc.) The number in parentheses is the amount of smaller "boxes" in

 the array.

 To use an array, you assign values to the array using the LET command

 just as you would a regular variable. However, this time you have to spec-

 ify which part of the array you are assigning the value to. For example,

 DIM Day$(7)

 LET Day$(1) = "Sunday"

 LET Day$(2) = "Monday"

 and so on. To PRINT one of these variables in the array, you would

 do so just like a regular variable:

 PRINT "Today is "; Day$(1); "."

 And, accordingly, to get a value from the keyboard into the array,

 you use the INPUT command:

 INPUT "What is Player 1's name"; players$(1)

 INPUT "What is Player 2's name"; players$(2)

 You can use an array element just as you would use a variable in

 any statement. Using arrays, you can manage hundreds of names, values,

 strings, dollar amounts, and much more.

 So now you can use arrays. But wouldn't it be tedious, say, if you

 wanted to print the 100 different values of an array named players$? It

 obviously would be wasteful to have 100 different print commands. This

 is where LOOPS come in.

 A loop is a set of instructions that are repeated either a certain

 number of times, until a condition is met, or infinitely. The first loop

 command (or set or commands, really) we will study is the FOR...NEXT loop.

 It repeats the commands between the FOR and NEXT commands a certain number

 of times. Its syntax is simple:

 FOR i = 1 TO 100

 PRINT i

 NEXT i

 The program would print the numbers from one to a hundred. Why did

 we name the variable "i"? It's just a standard - one that has been in

 place for several decades. You can call it anything you want - "bob,"

 "sam," "linda," or "z." You just have to adjust the code above. You can

 also change the lower and upper values of i - for example,

 FOR i = 6 TO 371

 PRINT "The magic number could be:"; i

 NEXT i

 Another way to change how the FOR...NEXT loop increments is by using

 the STEP command. If you omit the STEP command (as in a regular FOR...NEXT

 loop), "i" increases by one every time the commands in the loop are comp-

 leted. With the use of the STEP command, you can change this to any number

 you desire. For example:

 FOR i = 100 TO 300 STEP 2

 PRINT "The magic number might be:"; i

 NEXT i

 This would print all the even numbers from 100 to 300. You could also

 make "i" go backwards, as in this example:

 FOR i = 300 TO 100 STEP -2

 PRINT "The nifty numeral is now:"; i

 NEXT i

 FOR...NEXT loops can be used for just about anything. In the next

 chapter, I will talk about two other kinds of loops that keep going until

 a certain condition is met. But until then, (it won't be six months this

 time!) fool around with this loop.

 The last command I'll talk about in this installment is the GOTO

 command. If you don't know about it, GOTO is a very simple yet extremely

 powerful command that lets you split up your program into smaller parts.

 Here's how you use it. You have to "label" lines that you want to go to

 using the GOTO command by assigning them numbers or names. For example:

 topofprogram: CLS

 PRINT "This is an infinite loop"

 GOTO topofprogram

 Or, this:

 1 CLS

 PRINT "Hello world!"

 GOTO 1

 And that's GOTO. Very simple, yet powerful. So how can it be use-

 ful? It's not very important to be able to just GOTO in a program without

 some reason to. GOTO becomes very useful when used in conjunction with

 the IF...THEN statement, which allows logical progression of your program

 based on a condition.

 IF...THEN does exactly what its commands say. IF this is true, THEN

 do this. You can use it to create some type of menu, like this:

 PRINT "My Menu"

 PRINT "Press 1 to clear the screen, or 2 to say 'Hello'!"

 INPUT "What do you want to do"; choice

 IF choice = 1 THEN GOTO clrscr

 IF choice = 2 THEN GOTO hello

 clrscr: CLS

 PRINT "Done."

 END

 hello: PRINT "Hello, hello, hello!"

 END

 You can change the GOTO after the THEN.. statement to any valid

 QBasic command, like LET, PRINT, or INPUT. Or, you can replace the

 "=" with any mathematical symbol (like greater than(>), less than(<>)) Here's a couple of examples in one program:

 PRINT "Program Example #1"

 PRINT "Try to guess the number I am thinking of between 1 and 10."

 PRINT "You get 3 chances."

 INPUT "First chance"; number

 IF number = 3 THEN GOTO gotit

 PRINT "Sorry!"

 INPUT "Second chance"; number

 IF number = 3 THEN GOTO gotit

 PRINT "Ooh!"

 INPUT "Last chance"; number

 IF number = 3 THEN GOTO gotit

 PRINT "Sorry! The number was 3!"

 END

 gotit: PRINT "You win! Good job!"

 And that's your basic IF...THEN statement. The last thing we'll

 deal with in this chapter is a cosmetic command that will let you change

 the color of the text on the screen. It is the COLOR command, and lets

 you change the color of the text to one of 16 colors (including black,

 the background color). You use it in this form:

 COLOR 13

 PRINT "Magenta!"

 COLOR 7

 PRINT "Grey!"

 The number after the COLOR statement is one of these color codes:

 00 - black 08 - dark grey

 01 - dark blue 09 - light blue

 02 - dark green 10 - light green

 03 - dark cyan 11 - light cyan

 04 - dark red 12 - light red

 05 - dark purple 13 - magenta

 06 - orange brown 14 - yellow

 07 - grey 15 - bright white

 That ends our discussion of the COLOR statement and our chapter.

 This chapter introduced a lot of new material that will allow you

 to accomplish a lot more in your QBasic programs. Good luck, and

 keep bugging Mallard to write a fourth installment in this series!

 Exercises:

 1. Write a guessing-game program that gives you three chances

 to guess a pre-determined number between 1 and 10. After each

 guess, if the guess is incorrect, have the program tell the user

 whether (s)he is too high or too low. If the user guesses

 correctly, give them a colorful "winner" message.

 2. Create an array that stores all the months of the year, then

 create an array with all the days of the year. Write a program

 that displays all the months and days in a colorful form using

 a FOR...NEXT loop.

 3. Fool around with all the commands in this chapter.

