 Welcome! In this chapter, we will cover the following commands:

 þ DO...LOOP þ OPEN

 þ INT þ CLOSE

 þ RANDOMIZE TIMER þ RND þ PRINT #

 þ SELECT...END SELECT þ INPUT #

 þ INKEY$

 The first command we'll discuss here is the

 DO...LOOP type of loop. In the previous chapter, we talked about the

 FOR...NEXT loop, which let you do something a certain number of times.

 This is great if you know EXACTLY how many times you want something to

 be done. But what if you don't? What if you want something to be done

 until a condition is filled? This is exactly the void the DO...LOOP

 loop fills.

 All you have to do is say DO WHILE... or UNTIL.. a condition is

 met, such as "x = 10". Then put the commands you want to be in the loop,

 and have a LOOP command to close it all up. Here's a very simple example

 of how to use the DO loop.

 DO UNTIL a = 10

 try = try + 1

 PRINT "Try number"; try

 PRINT

 PRINT "Guess the super-secret number!"

 INPUT "Well"; a

 LOOP

 Of course, there's at least two ways to do everything in programming,

 so instead of DO UNTIL a = 10 as the first line, you could use the line

 DO WHILE a <> 10 and it would do the same thing. That's it! The loop

 is very simple, but infinitely useful.

 One such use of the DO loop is to have a "Press Any Key" prompt that

 new programmers are so eager to stick in their programs, but usually have

 to settle for "Please press enter... ". This is accomplished with

 the nifty function INKEY$, which is the IMMEDIATE, CURRENT key being

 pressed on the keyboard at any given moment. To make a "Press a key"

 prompt, you can cut and paste this next little bit into your program.

 DO WHILE INKEY$ = ""

 LOOP

 And that's it! Holy posable action figures, Batman!(tm) INKEY$ also

 has tons of uses in your program, and one of its main uses is to have

 a "hot-key" menu instead of an INPUT menu. However, this requires a more

 complex construction similar to an IF...THEN construction. This new

 set of commands is the SELECT CASE...END SELECT group, and lets you set

 a bunch of different IF...THEN like statements into one big grouping in

 your program instead of having hundreds of seperate statements. It also

 allows you to have multiple commands per CASE of a variable.

 The use is pretty simple, as shown in this example:

 PRINT "The Main Menu"

 PRINT "1) End the program"

 PRINT "2) Surprise"

 PRINT

 INPUT "Choice"; chc

 SELECT CASE chc

 CASE 1

 PRINT "Fine, then!"

 END

 CASE 2

 PRINT "Surprise! AAAH!!"

 PRINT "Are you surprised? No? Oh well..."

 END

 CASE ELSE 'note this little

 PRINT "Why didn't you pick 1 or 2?" 'command which lets you

 END 'trap invalid answers

 END SELECT

 All you need to do is have a SELECT CASE variable statement, then

 give all the seperate CASEs as you would an IF statement. When you're all

 done, be SURE to stick an END SELECT in there or else your program won't

 run.

 One other nifty programming trick I stuck in there was the CASE ELSE

 command. This checks to see that the variable does equal one of your

 CASEs, and if it doesn't, executes the commands under its CASE. And that's

 the basics of the SELECT CASE..END SELECT group of statements, which you

 will probably see a lot in programs written by myself just because they're

 very useful commands.

 Another very requested item is how to do random numbers in QBasic

 for dice rolls or whatever you might need it for. There's a very simple

 way to do this, involving the LET, INT, and RND commands. Here's the syn-

 tax of it:

 x = INT(RND * 10) + 1

 This would give you a number between 1 and 10. To get a number

 between 0 and 10, jus get rid of the "+ 1" portion of the line. That's

 all you have to do for random numbers - just change the RND number to get

 your upper bound.

 Now, on to the file commands. This really should be covered in a

 different chapter, but due to the overwhelming demand for a files tutorial,

 here's the basics of how to use files in QBasic. The kind of files we'll

 be dealing with are called "sequential files." There's not much to that

 complex term (why use a big word when a dimunitive one will do?). All it

 really means is that we write to the file one line at a time, from top to

 bottom.

 You need to use the OPEN command to open a file and the CLOSE command

 to close it (wow! try and follow that logic!). Be sure to CLOSE every file

 that you open before your program terminates so that your data is saved.

 To open a file, you have to use the command in this way:

 OPEN "filename.ext" FOR [OUTPUT/INPUT/APPEND] AS #1 [or other number]

 The OPEN command is far more complex than this, but this is as far

 as I'll go for now. The [OUTPUT/INPUT/APPEND] portion changes, depending

 on what you want to do with the file you've opened. If you want to read

 from the file, line by line, you have to use the INPUT command. To write

 to the file, overwriting whatever is already there, you have to use the

 OUTPUT command. And to append to the file (add on to the end), you use

 the APPEND command. See how all that works out?

 So here we are. We've opened our file. Now what do we do? I know

 you still remember the PRINT and INPUT commands (how could you not?), so

 depending on whether you're INPUTting from or OUTPUTting to, there are

 two things to do. You still use the PRINT command to print and the INPUT

 command to read from the file, but now you stick a file number (like #1)

 in front of what you want to PRINT or INPUT. For example:

 OPEN "file.txt" FOR OUTPUT AS #1

 PRINT #1, "Hello world!"

 CLOSE

 OPEN "file.txt" FOR INPUT AS #1

 INPUT #1, s$

 PRINT s$

 CLOSE

And that's how you use files. Pretty simple for sequential files,

 huh? Good. You're going to need to fool around with these commands a

 LOT before you get the hang of it. There's one more thing to say about

 files, though... the INPUT # statement only reads up to a comma on a

 line. So, you must use LINE INPUT to read an entire line. For example:

 OPEN "file.txt" FOR INPUT AS #1

 LINE INPUT #1, s$

 PRINT s$

 CLOSE

This would read the entire line into the variable "s$". Just re-

 member, when using the OUTPUT command, it ERASES what is in the file al-

 ready. Be sure not to get rid of anything important!

So that's the fourth installment in my little series here. I hope

 you learned a lot, and don't worry, it won't be that long before I put

 out a fifth chapter. So keep programming, and try these exercises:

 exercises

 1. Make a guessing game that starts with a random number between 1 and

 20. Give the player 5 guesses, and after each guess tell them whether

 they are too high or too low.

 2. Use the file commands a LOT. And I mean a LOT. If you're making a

 game, try to create a high score list or a "save game" feature.

 3. Keep at it!

