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 ABSTRACT

The theory for transient isothermal flow of water into nonswelling unsaturated soil has
been developed to a large extent in terms of solutions of the non-linear Richards equation. In
the field, the description of infiltration is highly complicated since the initial and boundary
conditions are usually not constant while the soil characteristics may vary with time and
space. In this study, a model hac been formulated for finite difference solution of the non-
linear Richards equation applicable to transient, one-dimensional water flow through the un-
saturated porous medium. The simulated soil moisture profiles for explicit, Crank-Nicolson
and implicit schemes have been compared with the quasi-analytical solution of Philip.

KEY WORDS : Flow through unsaturated porous media, Richards equation, Numerical simu-
lation, Infiltration, One-dimensional model.

INTRODUCTION

Most of the processes invol\iing soil-water interactions in the field, and particularly the
flow of water in the rooting zone of most crop plants, occur while the soil is in an unsaturated
condition. Unsaturated flow processes are in general complicated and difficult to describe
quantitatively, since they often entail changes in the state and content of soil water during
flow. Such changes involve complex relations among the variable soil wetness, suction, and
conductivity, whose inter-relations may be further complicated by hysteresis. The formulation
and solution of unsaturated flow problems very often require the use of indirect methods of
analysis, based on approximations or numerical techniques. For this reason, the development
of rigorous theoretical and experimental methods for treating these problems was rather late
in coming. In recent decades, however, unsaturated flow has become one of the most important
and active topics of research and this research has resulted in significant theoretical and
practical advances.

Richards (1931) presented the differential equation for soil water flow using an analogy
to heat flow in porous media. Up to now this equaiton is used as the basic mathematical
expression that underlies unsaturated flow phenomenon. Soil water flow, however, is highly
non-linear, as both the hydraulic conductivity and the soil water pressure head depend on the
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soil water content. Exact analytical solutions are only possible for simplified flow cases under
a number of restrictive assumptions. Numerical solution of the flow equation on the other had
offers a powerful tool in approximating the real nature of the unsaturated zone for a wide
variety of soil systems and external conditions.

The objective of the present study is to develop a numerical model (finite difference
scheme) for solving the non-linear partial differential equation (Richards equation) describing
one-dimensional water flow through the unsaturated porous medium by using explicit, Crank-
Nicolson and implicit methods for discretization. The simulated soil moisture profiles at
various times in a sandy soil have been compared with the soil moisture profiles obtained
through quasi-analytical solution of Philip. Philip's quasi-analytical solution was obtained by
solving Richards equation subject to the condition of a constant pressure at the soil surface
(Haverkamp et al. 1977).

METHODOLOGY
General Equation of Unsaturated Flow
According to Darcy's law, for one-dimensional vertical flow, the volumetric flux q
(cm?*/cm?*/h) can be written as
d
q=-K—(h-z) (cm/h)
oz

or q=—K(ﬂ,— -1 (cm/h) 1y
oz

where K is the hydraulic conductivity (cm/h), h is the soil water pressure head (relative to
the atmosphere) expressed in cm of water and z is the gravitational head (cm) considered
positive in downward direction.

In order to get a complete mathematical description for unsaturated flow, we apply the
continuity principle (Law of Conservation of Mass)

06 _ aq 1 \
TR () @
where @ is soil moisture expressed in cm¥cm?® and t is time in hours.

Substitution of Eq. (1) into Eq. (2) yields the partial differential equation

a0

d dh
ET—E[K(E— ) (3)
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Equation (3) is a second order, parabolic type of partial differential equation (known as
Richards equation) which is non-linear because of the dependency of K and h on 6 . To avoid
the problem of the two dependent variables 8 and h, the derivative of © with respect to h can
be introduced, which is known as the specific water capacity C.

c=S (Vo) @

In Eq. (4) a total instead of a partial derivative notation is used, because h is considered
here as a single value function of @ (no hysteresis). Writing

30 _46 dh
ot dh dt )
and substituting Eq. (4) into Eq. (3) yields
oh 0 dh '
— = — [K(h) (=— -1
C(h) o az[ ( )(az )] (6)

In Eq. (6) the coefficients C and K are functions of the dependent variable h, but not

functions of the derivatives dh/dt and dh/dz. Written in this form, Eq. (6) provides the
basis for predicting soil water movement in layered soils of which each layer may have
different physical properties.

To obtain a solution for thé one-dimensional vertical flow equation, Eq. (6) must be
supplimented by appropriate initial and boundary conditions.

For the present study, initial condition has been defined as
0(z,t=0)=0.10 @)
and upper boundary condition as
0 (z=0, t) = 0.267 | ®)
Soil Moisture Characteristics
For the present study, functional relations, as reported by Haverkamp et al. (1977) for
. characterizing the hydraulic properties of a soil, were used. They compared six models,
employing different ways of discretization of non-linear infiltration equation in terms of

execution time, accuracy, and programming considerations. The models were tested by
comparing water content profiles calculated at given times by each of the model with results
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obtained from an infiltration experiment carried out in the laboratory. Al] models yielded
excellent agreement with water content profiles measured at various times.

The following analytical expressions, obtained by a least square fit through all data points
were chosen for characterizing the soil :

_A
* A+ ©)

where, K, =34 cm/h, A= 1.175 x 108, By =4.74, and

_a(e (-))
arpp (10)

where 6, =0.287, 6,=0075, o =1611x 105, B, =3.96.

Subscript s refers to saturation, i.e. the value of © “for which h = 0, and the subscript r to
residual water content.

Figure 1 presents the relationships between the soil water pressure h, the water content 6
and the hydraulic conductivity K for the above soil used in this study.
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FIG.1 RELATIONSHIPS BETWEEN THE SOIL WATER PRESSURE h, THE WATER CONTENTS
6 AND THE HYDRAULIC CONDUCTIVITY K FOR THE SOIL USED IN THE STUDY
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Fimite Difference Approximation

Let the entire flow domain be divided into a grid of equal intervals Az and the time domain
be similarly divided into intervals At. The partial differential Eq. (6) can be approximated by
a finite difference equation replacing ot and 9z by At and Az respectively in the following

way :

Cj+a hilH—hf =

' At

1 [ o MR e R (1)
Az i+1/2 Az i-1/2 Az

LN}

where i and j are the indices of space and time respectively’ ‘a' is a weighting factor (0 < a < 1)
introduced in such a manner that by putting a = 0, it is transformed into explicit scheme, a =
0.5 into Crank-Nicolson scheme, and a = 1 into implicit scheme. Therefore,

h/** = (1-a) bl # a hi*! (12a)
hi7i = (1-a) b, + a hl*) (12b)
h*} = (1-a) b/, + a hi*] (12c)

The values of Cij+a, K?If/z and Kffi’/z can be approximated by
Cl*®=F =(1-a) C}+a C}*! (13a)

1

= (1-a) J(k! K, )+a Jad™ kit (13b)

j+ j j+1
KX, = B=0-a)K]_, +akl],

= (1-a) 1/K{_l KD)+aki_,+a ,/K{j{ Kt (13c)

Different methods of weighting interblock hydraulic conductivity values for modelling
one-dimensional water transfer in homogeneous unsaturated soil were tested by Haverkamp

jta j j+1
Kiz =B =(-a) K, p+a K},
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and Vauclin (1979) for studying their influence upon the accuracy of the finite difference
solution. The only method that well simulated their experimental observations was the geo-
metric mean. This approach has therefore been adopted in the Egs. (13b) and (13c).

Substitution of Egs. (12) and (13) in Eq. (11) yields the following linear algebraic equation
valid forweach nodal point :

At i+l At At ivl
~-aF Wt +| R+aFy —— +aF — | I
[ 3 (Az)Z:\ i-1 [F‘ 2 (Az)? 3 (Az)”l '

At i At j
[om ] -|o-on g Jo-

[ At At |
. —(1-a)F —(1-a)E h!
+LF' (-0 F oo~ -2 3(Az>2}‘

[ At : At
+L(1—a) F2 W]h‘i’.,,l'F(FB_FZ)E (14)

When Egq. (14) is applied at all nodes, the result is a system of simultaneous linear algebraic
equations with a tridiagonal coefficient matrix with zero elements outside the diagonals and
unknown values of h. In solving this system of equations, the so-called direct method was
used by applying a tridiagonal algorithm of the kind discussed by Remson et al. (1971).

Soil Moisture Simulation

Due to the fact that the hydraulic conductivity, K(h) and specific water capacity, C(h) at
the end of each time step are unknown, an iterative process was used. In the iteration method,

hij is replaced by h{ (n), where n is an iteration index. For the first iteration, hij (0) is set

equal to hf The resulting linear equations are then solved for h{”, and hg (1) is obtained
from this solution. The parameters C(h) and K(h) are adjusted corresponding to this estimate

of h{ and the equations are solved again to find hg (2), and the procedure is continued. The

iterative procedure is generally terminated when two successive values of h{' are close to each

othere.g.
nnode . . 2
3 [b (- i (n-D] <0.0001 (15)
i=1
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The iteration method is time-consuming, but gives better estiamates.

A specific solution of Richards equation was obtained by Philip (1957) in the case of
mfiltration in a homogeneous semi-infinite column satisfying the boundary conditions :

t<0 z20 9=60
(16)
t20 z=0 0=6,

In a later paper (Philip, 1958), Richards equation was solved for the conditions :
t<0 z20 h=h
t20 z=0 h=h, an

where h, could take positive values corresponding to an infiltration experiment with

submersion. Philip's method led to the solution in the form of a power series in /2. Since
the series converges only for finite t, the solution becomes unreliable as t tends to infinity; the
t-range of convergence is dependent upon the characteristics of soil and the initial and bound-
ary conditions.

In the present study, soil moisture profiles were simulated at various times for explicit
scheme (a = 0), Crank-Nicolson scheme (a = 0.5) and implicit scheme (a = 1) and compared
with the quasi-analytical solution of Philip.

RESULTS

The numerical model described above was tested by comparing the water content profiles
calculated at given times with results obtained from quasi-analytical solution of Philip. Using
the functional relations given in Egs. (9) and (10) for characterizing the hydraulic properties
of the soil, the water content profiles were determined subject to the following conditions :

t<0 z20 60=0.10cm3/cm3
(18)

t20 z=0 6, =0.267cm?/cm3

The numerical computations were made with a depth interval Az = 1 cm, the total
simulation period being 0.8 hour. It was found by trial and error that the numerical scheme
is stable for time step At = 0.4 second in case of explicit schem, At = 1 second in case of
Crank-Nicolson scheme, and At = 5 seconds in case of implicit scheme. Therefore, these
values of time steps were used for condition of stability.

Haverkamp et al. (1977) has reported the infiltration profiles at various times for infiltra-
tion in sand (under consideration) obtained by quasi-analytical solution of Philip. Numerical
data of Philip's solution are given in Table - 1.
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TABLE - 1
WATER CONTENT PROFILES DETERMINED WITH THE SOLUTION
OF PHILIP
Depth (z)

Water Content (0) t=0.1 hour t = 0.2 hour t = 0.8 hour
0.2523 9.4 17.7 65.2
0.2356 12.0 20.7 69.2
0.2189 13.2 22.1 71.1
0.2021 14.1 23.1 72.3
0.:1854 14.8 23.8 73.2
0.1686 15.3 24.5 74.0
0.1519 15.9 25.2 74.8
0.1351 16.5 25.9 75.7
0.1184 17.3 26.8 76.8
0.1016 19.5 29.5 78.6

TABLE -2
COMPARISON BEWTEEN WATER CONTENT PROFILES AT
t=0.1 HOUR
Water Content (0)
Depth

(z) Philip Explicit Crank-Nicolson Implicit

Scheme Scheme Scheme
10 0.2484 0.247574 0.247808 0.248945
11 0.2420 0.241063 0.241411 0.243104
12 0.2356 0.231798 0.232331 0.234931
13 0.2217 0.218237 0.219075 0.223192
14 0.2040 0.198274 0.199584 0.206158
15 0.1787 0.170837 0.172673 0.182437
16 0.1491 0.140986 0.142864 0.154198
17 0.1247 0.118997 0.120258 0.129246
18 0.1130 0.107607 0.108236 0.113437
19 0.1054 0.102811 0.103081 0.105591
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TABLE -3
COMPARISON BEWTEEN WATER CONTENT PROFILES AT
t=0.2 HOUR
Water Content (9)
Depth

(z) Philip Explicit Crank-Nicolson Implicit

Scheme Scheme Scheme
18 0.2506 0.247249 0.247470 0.248583
19 0.2451 0.242231 0.242532 0.244049
20 0.2395 0.235506 0.235924 0.238042
21 0.2320 0.226299 0.226895 0.229922
22 0.2201 0.213518 0.214375 0.218780
23 0.2038 0.195913 0.197126 0.203499
24 0.1806 0.173123 0.174694 0.183346
25 0.1567 0.148020 0.149676 0.159615
26 0.1332 0.126794 0.128098 0.136890
27 0.1172 0.113176 0.113972 0.119994
28 0.1109 0.106002 0.106418 0.109876
29 0.1047 0.102619 0.102819 0.104615

TABLE - 4
COMPARISON BEWTEEN WATER CONTENT PROFILES AT
t=0.8 HOUR
k Water Content (9)
Depth

(z) Philip Explicit Crank-Nicolson Implicit

Scheme Scheme Scheme
66 0.2490 0.246294 0.246633 0.248422
67 0.2448 0.241825 0.242265 0.244585
68 0.2406 0.236003 0.236586 0.239649
69 0.2364 0.228291 0.229075 0.233195
70 0.2286 0.217948 0.219016 0.224639
71 0.2198 0.204080 0.205525 0.213216
72 0.2063 0.186024 0.187897 0.198131
73 0.1891 0.164453 0.166619 0.179147
74 0.1686 0.142607 0.144667 0.157722
75 0.1482 0.124907 0.126460 0.137451
76 0.1305 0.113293 0.114262 0.121852
77 0.1165 0.106719 0.107257 0.111818
78 0.1072 0.103300 0.103580 0.106105

ISH JOURNAL OF HYDRAULIC ENGINEERING, VOL. 4, 1998, NO. 1




(14) A NUMERICAL SIMULATION MODEL FOR ONE-DIMENSIONAL INFILTRATION VOL . 4, (1)

Tables 2, 3 and 4 present the comparison between water content profiles determined with
the solution of Philip and the simulated water content profiles for explicit scheme, Crank-
Nicolson scheme and implicit scheme, at t = 0.1 hour, 0.2 hour and 0.8 hour respectively. In all
cases, the rate of advance of the water front is particularly well described. Some discrepancies
are found between numerical water content profiles and quasi-analytical solution in the low
water content domain.However, all the numerical schemes yield comparable results which are
not significantly different from the quasi-analytical solution.

It can be observed that the implicit scheme gives better agreement with infiltration profiles
calculated with Philip's method as compared to the explicit scheme and Crank-Nicolson scheme.
Considering Philip's solution as standard, the average relative error in the water content
distributions for all the three time simulations was calculated as 1.91 % for implicit scheme,
4.16 % for Crank-Nicolson scheme and 4.71 % for explicit scheme.

Implicit methods are therefore preferable in view of their stability, even for fairly large
steps thus keeping computer costs low, and their flexibility for solving flow problems when
saturated and unsaturated zones have to be considered simultaneously, since C = 0, one
simply has to solve the Laplace's equation.

CONCLUSIONS

A numerical model has been developed for finite difference solution of the non-linear
Richards equation describing transient, one-dimensional water flow through the unsaturated
porous medium. The solution is applicable to homogeneous and isotropic soils in which
functional relationships between hydraulic conductivity, moisture content and soil moisture
tension do not show hysteresis properties.

The simulated water content profiles were compared with those computed through quasi-
analytical solution of Philip for the condition of a constant pressure at the soil surface. The
implicit scheme was found to give better agreement between the two.

The closer agreement between water content distributions obtained with the model and
Philip's quasi-analytical solution indicates that numerical model is a reliable tool for predict-
ing infiltration of water into soil. Considering computer time and stability problems, the im-
plicit finite approximation has the widest range of applicability for predicting water move-
ment in soil with both saturated and non-saturated regions.
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