Site hosted by Angelfire.com: Build your free website today!
Main Desktop Lessons Desktop Review Desktop Lab Desktop Chart Desktop

  
Conservation of Energy with Dissipative Forces

 

Table of Contents

Introduction
Problems
Answers

  

Introduction

We earlier saw

W NC = /\KE  +  /\PE

We can use this to calculate information about the nonconservative forces.

Remember  

Wfr = - Ffrd    (It is negative because the direction of the force is the opposite of the displacement)

Table of Contents

     

Problems
   
1.      A 1.00 x 10 4 kg truck is at the top of a 1000. m mountain.  When is allowed to use coast down this mountain and up the next mountain, it only reaches a height of 850. m.  The truck travels 3000. m, what is the average force of friction?
    
2. A basketball, 2.00 kg, is dropped from the top of the Hover Dam, height of 120. m, it is only falling at 29.9 m/s when it hits.  What is the average force of friction?
   
3. A man is on a sled at the top of a hill that is 50.0 m high and 120. m long.  At the bottom of the hill, the man and sled are moving 20.0 m/s.  If the total mass of the man and sled is 110. kg, what is the coefficient of kinetic friction?
   
4. The average force of friction on a softball, 1.00 kg, dropping from the top of the Empire State Building is 2.00 N.  If the softball drops 300. m, how fast is it falling?

Table of Contents

     

Answers
   
1.      A 1.00 x 10 4 kg truck is at the top of a 1000. m mountain.  When is allowed to use coast down this mountain and up the next mountain, it only reaches a height of 850. m.  The truck travels 3000. m, what is the average force of friction?
    
       
Since there is no Kinetic Energy at top of either mountain, WNC = /\PE.

WNC = Wfr = - Ffrd = mgh1 - mgh2   = mg (h -  h2)
    

             mg (h -  h2)         1.00 x 10 4 kg x 9.80 m s -2 ( 1000. m - 850. m )
Ffr =  ---------------------- = --------------------------------------------------------------- = 4.90 x 10 3 N
                  - d                                           3000. m
     

   

   

2. A basketball, 2.00 kg, is dropped from the top of the Hover Dam, height of 120. m, it is only falling at 29.9 m/s when it hits.  What is the average force of friction?
   
    
There is only Potential Energy at the top.  Only Kinetic Energy is present at the bottom.

WNC = Wfr = - Ffrd = /\PE + /\KE = mgh1  -  mv22 
    

             mg h1  - mv22         2.00 kg x 9.80 m s -2 x 120. m - x 2.00 kg x ( 29.9 m s -1)2 
Ffr  =  ----------------------  =  -------------------------------------------------------------------------------
                        - d                                                         120. m
    

Ffr = 12.5 N
   

   

   

3. A man is on a sled at the top of a hill that is 50.0 m high and 120. m long.  At the bottom of the hill, the man and sled are moving 20.0 m/s.  If the total mass of the man and sled is 110. kg, what is the coefficient of kinetic friction?
   
   
There is only Potential Energy at the top.  Only Kinetic Energy is present at the bottom.

WNC = Wfr = - Ffrd = /\PE + /\KE =  mgh1  -  mv22 
    

             mg h1  - mv22          110. kg x 9.80 m s -2 x 50.0 m - x 110. kg x ( 20.0 m s -1 ) 2 
Ffr  =  -----------------------  =  --------------------------------------------------------------------------------
                         - d                                                           120. m
    

Ffr = 264 N
   

                  50.0 m  
= Sin -1 ( ---------- ) = 24.6o  
                   120. m
   

Ffr = FN = FwCos
   

          Ffr                         264 N
= ------------ = ------------------------------------------
        FwCos
       110. kg x 9.80 m s -2 Cos 24.6o 
   

= 0.269
   

   

   

4. The average force of friction on a softball, 1.00 kg,  dropping from the top of the Empire State Building is 2.00 N.  If the softball drops 300. m, how fast is it falling?
    
    
There is only Potential Energy at the top.  Only Kinetic Energy is present at the bottom.

WNC = Wfr = - Ffrd = /\PE + /\KE = mgh1mv22   
    

          2mgh1 + 2Ffrd                 2 x 1.00 kg x 9.80 m s -2 x 300. m + 2 x 2.00 N ( - 300 m)
v = ( --------------------- ) 1/2  = ( --------------------------------------------------------------------------- ) 1/2 = 68.4 m s -1 
                  m                                                              1.00 kg
    

Table of Contents