Site hosted by Angelfire.com: Build your free website today!
Main Desktop Lessons Desktop Review Desktop Lab Desktop Chart Desktop

      
Torque and Rotational Inertia

Table of Contents

Introduction
Problems
Answers
Moments of Inertia

      
Introduction

According to Newton's Second Law for linear quantities                             F = ma

Relating angular acceleration to tangential linear acceleration                   aT  =  r

   
If we combine the two equations                                                                    F = mr

   
If we multiply both sides of the equation by r                                               Fr =  = mr2     For a Single Particle 

   
mr2 represents the rotational inertia of the particle and is called the moment of inertia.

   
For rigid bodies that has many particles at different distance from the axis of rotation   
= (mr2)  

mr2 is the Moment of Rotational Inertia of the object and has the symbol I.  There is a chart for different shape objects at the bottom of this page.  Moments of Inertia

= I

I can also be calculated using the radius of gyration, k.  It is an average radius.  

I = MK2   

Table of Contents

     

Problems

1.     An oxygen molecule consist of two oxygen atoms whose total mass is 32 amu and whose moment of inertia about an axis perpendicular to the line joining the two atoms, midway between them, is 1.9 x 10 -46 kg . m2.  Estimate the effective distance between the atoms.   Moments of Inertia
   
2. In order to get a uniform spherical satellite spinning at the correct rate, engineers fire four tangential rockets that are equally spaced around the cylinder and creating torque in the same direction.  If the satellite has a mass of 2500. kg and a radius of 3.50 m, what is the required constant force for each rocket to achieve 45.0 rpm in 4.00 minutes?   Moments of Inertia
   
3. A grinding wheel is a uniform cylinder with a radius of 8.25 cm and a mass of 750. g.   Calculate (a) its moment of inertia about its center, and (b) the applied torque needed to accelerate it from rest to 2500. rpm in 9.50 s if it is known to slow down from 1250 rpm to rest in exactly 1 minute.   Moments of Inertia
   
4. A softball player swings a bat, accelerating it from rest to 4.25 rev/s in 0.25 s.  Approximate the bat as a 2.5 kg uniform rod of length 89 cm, and compute the torque the player applies to one end of the bat.   Moments of Inertia
   
5. A small 1.33 kg ball on the end of an extremely  light rod is rotated in a horizontal circle of radium 85.5 cm.  Calculate (a) the moment of inertia of the system about the axis of rotation, and (b) the torque needed to keep the ball rotating at constant angular velocity if air resistance exerts a force of 0.0750 N on the ball.   Moments of Inertia
   
6. A day-care worker pushes tangentially on a small hand-driven merry-go-round and is able to accelerate it from rest to a spinning rate of 35.0 rpm in 10.0 s.  Assume the merry-go-round is a disk of radius 2.25 m and has a mass of 750. kg.  Two children, 30.0 kg each, sit opposite each other on the edge.  Calculate the torque required to produce the acceleration, ignoring friction.  What force is required?    Moments of Inertia

Table of Contents

    

Answers

1.     An oxygen molecule consist of two oxygen atoms whose total mass is 32 amu and whose moment of inertia about an axis perpendicular to the line joining the two atoms, midway between them, is 1.9 x 10 -46 kg . m2.  Estimate the effective distance between the atoms.   Moments of Inertia
   
   
                          1 kg
32 amu x -------------------------- = 5.3 x 10 -26 kg
                  6.02 x 10 26 amu
   

This is a two body system where

  = (mr2)  =  (m r2 + mr2) = 2mr2  = I           Solve for r.

    
          I 
                  1.9 x 10 -46 kg . m2 

r = ( ---- ) 1/2   =  ( ------------------------- ) 1/2   =  6.0 x 10 -11 m
        2m              
      5.3 x 10 -26 kg
   

Distance between molecules = 2r = 2 x 6.0 x 10 -11 m = 1.2 x 10 -10 m
   

   

   

2. In order to get a uniform spherical satellite spinning at the correct rate, engineers fire four tangential rockets that are equally spaced around the cylinder and creating torque in the same direction.  If the satellite has a mass of 2500. kg and a radius of 3.50 m, what is the required constant force for each rocket to achieve 45.0 rpm in 4.00 minutes?    Moments of Inertia
   
   
45.0 rev        1 min       2r
------------  x  --------- x ----------  =  4.71 rad s -1  
  1 min            60 s        1 rev

   

            /\          4.71 rad s -1  -  0  rad s -1  
  =  ---------- =  -----------------------------------  =  0.0196 rad s -2  
             /\t                     240. s

   

Total Force = 4 x force for 1 rocket = 4F

= r = I  = 4rF 

I = 2/5 mR2                              From  Moments of Inertia  Chart

   
2/5 m R2
  = 4rF                   Solve for F.

   
          mr
             2500. kg x 3.50 m x 0.0196 rad s -2 
F = -------------  =  ------------------------------------------------  =  17.2 N
           10                                    10
   

   

   

3. A grinding wheel is a uniform cylinder with a radius of 8.25 cm and a mass of 750. g.   Calculate (a) its moment of inertia about its center, and (b) the applied torque needed to accelerate it from rest to 2500. rpm in 9.50 s if it is known to slow down from 1250 rpm to rest in exactly 1 minute.   Moments of Inertia
   
   
(a)   I = mR2                          From  Moments of Inertia  Chart
   

I = x 0.750 kg x ( 0.0825 m ) 2  =  0.00255 kg m 2 
    

(b)

2500 rev        1 min       2r
-------------  x  --------- x ----------  =  262 rad s -1  
  1 min              60 s        1 rev

   

1250 rev        1 min       2r
-------------  x  --------- x ----------  =  131 rad s -1  
  1 min              60 s        1 rev

   

               /\          0 rad s -1  -  131  rad s -1  
fr  =  ---------- =  -----------------------------------  =  - 2.18 rad s -2  
                /\t                     60. s

   

           /\          262 rad s -1  -  0  rad s -1  
  =  ---------- =  -----------------------------------  =  27.6 rad s -2  
             /\t                     9.50 s

   
Sufficient torque must be applied to overcome friction in addition to accomplish the desired accelertion.

Total  =  27.6 rad s -2  +  2.18 rad s -2  =  29.8 rad s -2  

=   I   =  0.00255 kg m 2 x  29.8 rad s -2   =  0.0760 m . N
  

   

    

4. A softball player swings a bat, accelerating it from rest to 4.25 rev/s in 0.25 s.  Approximate the bat as a 2.5 kg uniform rod of length 89 cm, and compute the torque the player applies to one end of the bat.   Moments of Inertia
   
   
I = 1/3 mL2  =  1/3 x 2.5 kg x 0.89 m = 0.74 kg m       From  Moments of Inertia  Chart
   

4.25 rev          2r
------------  x  ---------  =  26.7 
rad s -2  
  1 s               1 rev

   

           /\          26.7 rad s -1  -  0  rad s -1  
  =  ---------- =  -----------------------------------  =  110 rad s -2  
             /\t                     0.25 s

   
=   I   =  0.74 kg m 2 x  110 rad s -2   =  81 m . N
  

   

   

5. A small 1.33 kg ball on the end of an extremely  light rod is rotated in a horizontal circle of radium 85.5 cm.  Calculate (a) the moment of inertia of the system about the axis of rotation, and (b) the torque needed to keep the ball rotating at constant angular velocity if air resistance exerts a force of 0.0750 N on the ball.    Moments of Inertia
   
    
(a)     I = mr2  =  1.33 kg x ( 0.855 m )2  =  0.972 kg m 2              Moment of Inertia of a single point.

   
(b)     
= r =  0.855 m x 0.0750 N  =  0.0641 m . N
   

   

   

6. A day-care worker pushes tangentially on a small hand-driven merry-go-round and is able to accelerate it from rest to a spinning rate of 35.0 rpm in 10.0 s.  Assume the merry-go-round is a disk of radius 2.25 m and has a mass of 750. kg.  Two children, 30.0 kg each, sit opposite each other on the edge.  Calculate the torque required to produce the acceleration, ignoring friction.  What force is required?   Moments of Inertia
   
   
35.0 rev        1 min       2r
-----------   x  --------- x ----------  =  3.67 rad s -1  
  1 min            60 s        1 rev

   
   
           /\          3.67 rad s -1  -  0  rad s -1  
  =  ---------- =  -----------------------------------  =  0.367 rad s -2  
             /\t                     10.0 s

   
I  =  
mcylinderR2   +  mchildrenR2  =  x 750. kg x ( 2.25 m )2  +  60.0 kg x ( 2.25 m )2  =  2.20 x 10 3 kg m2 

   
=   I   =  2.20 x 10 3  kg m 2 x  0.367 rad s -2   =  807 m . N
   

= r                              Solve for perpendicular force.

   

                    807 m . N
= ----  =  ---------------  =  359 N
          r           2.25 m
    

Table of Contents

    

Moments of Inertia

Object Location
of Axis
Moment
of Inertia
Radius of
Gyration
Thin Loop of radius, R Through
Center
MR2

R

Uniform cylinder of radius, R Through
Center
1/2 MR2

R
----
2 1/2

Uniform sphere of radius, R Through
Center
2/5 MR2

  2         
( -- )1/2 R
5        

Long uniform rod of length, L Through
Center
1/12 ML2

L
---------
12 1/2

Long uniform rod of length, L Through
End
1/3 ML2

L
----------
3 1/2

 Table of Contents