Site hosted by Angelfire.com: Build your free website today!
Main Desktop Lessons Desktop Review Desktop Lab Desktop Chart Desktop

      
Inelastic Collisions

Table of Contents

Introduction
Problems
Answers

      
Introduction

Inelastic Collision     A collision in which Kinetic Energy is not conserved.  Some of the Initial Kinetic Energy may be converted into other forms of Energy commonly Potential Energy or Thermal Energy.  It is also possible for Potential Energy to be changed into Kinetic Energy making the Total Kinetic Energy greater than the Initial Kinetic Energy.  This occurs when Chemical or Nuclear Energy is released.  
     
Completely Inelastic     A collision in which the two objects stick together.  The Kinetic Energy is not necessarily all transferred into other forms of energy because there can be some kinetic energy left.  For example, when a football player is tackled, they do not instantly stop.  Although the Kinetic Energy is not conserved, the total energy is conserved.  Total momentum is always conserved.

The ballistic pendulum to the left is used to measure the speed of a bullet with a mass of m.  The target is a large block of wood or other material of mass M, which is suspended by a length, l, to its center of mass.  After the collision in which the projectile is imbedded in the target, the center of mass is raised to a maximum height of h.  Determine the relationship between the initial speed of the projectile, v1, and the height, h.

   

 

 

Assuming the collision time is extremely short and the projectile comes to rest before mass M has moved significantly, there is not net external force and momentum is conserved.

mv1 = (M + m)v'

v' is the speed of the block and embedded projectile immediately after the collision before significant movement.

After the block begins to move gravity exerts a net force tending to pull it back to the original position.  We cannot use Conservation of Momentum because of this but can use Conservation of Mechanical Energy.  Initially we have only Kinetic Energy and at its maximum height we have only Potential Energy.

1/2 ( M + m )v'2  =  ( M + m )gh                    

 Solve this equation for v' 

v' = ( 2gh ) 1/2    

 Substitute into the first equation 

mv1 = ( M + m ) ( 2gh ) 1/2  

 Solve for v1 

         ( M + m ) ( 2gh ) 1/2          ( M + m )
v1 = ----------------------------  =  ---------------  ( 2gh ) 1/2  
                     m                                  m

Table of Contents

     

Problems

1.     A 20.0 g bullet is shot at a 2.00 kg block of wood in a ballistic pendulum.  The maximum height reached is 150.0 cm, what was the initial velocity of the bullet?
   
2. A 15.0 bullet is shot at 3.50 kg block of wood in a ballistic pendulum.  If the bullet is traveling 250. m/s and the length to the center of mass is 3.00 m long, what is the horizontal component of the pendulum's displacement.
   
3. An chemical explosion breaks a small asteroid into two pieces.  The larger piece has twice the mass of the smaller piece.  If the explosion released 5.60 x 10 6 kJ, how much energy did each piece acquire.
    
4. A 120. kg tackle moving 5.00 m/s collides and holds on to the quarterback, 80.0 kg, moving at right angle to the tackle at 8.50 m/s.  What is their velocity after the collision?
   
5. Uranium-232  --->  Thorium-228 + alpha    
The alpha particle emitted has a Kinetic Energy of 5.3 MeV (1 MeV = 1.6 x 10 -13 J).  Calculate the momentum and the Kinetic Energy of the Thorium-228.  Calculate the total energy released in the decay.  Assume the mass numbers are the masses of the particle (Valid because we can only justify 2 significant figures).

Table of Contents

    

Answers

1.     A 20.0 g bullet is shot at a 2.00 kg block of wood in a ballistic pendulum.  The maximum height reached is 150.0 cm, what was the initial velocity of the bullet?
   
   
         ( M + m ) ( 2gh ) 1/2          ( M + m )                        
v1 = ----------------------------  =  ---------------  ( 2gh ) 1/2  
                     m                                  m
   

         ( 0.0200 kg + 2.00 kg )
v1 = -------------------------------- ( 2 x 9.80 m s -2 x 0.150 m ) 1/2  =  173 m/s
                   0.0200 kg
    

2. A 15.0 bullet is shot at 3.50 kg block of wood in a ballistic pendulum.  If the bullet is traveling 250. m/s and the length to the center of mass is 3.00 m long, what is the horizontal component of the pendulum's displacement.
   
    
mv1 = (M + m)v'                                               Conservation of Momentum before and after collision.

1/2 ( M + m )v'2  =  ( M + m )gh                      Conservation of Kinetic Energy before and after movement.
   

Solve Conservation of Kinetic Energy for the common term.

v' = ( 2gh ) 1/2  
   

Substitute into Conservation of Momentum.

mv1 = ( M + m ) ( 2gh ) 1/2  
   

Solve for h

m2v12 = ( M + m )2 2gh

   
              m2v12                      ( 0.0150 kg )2 x ( 250. m/s )2 
h = -------------------- = ------------------------------------------------------- = 0.0581 m
       ( M + m )2 2g       ( 3.50 kg + 0.0150 kg )2 x 2 x 9.80 m s -2 
    

The diagram to the left shows the arc created in the ballistic pendulum.  

Observe the right triangle formed by the light blue line which is the horizontal displacement, the segment of red line, l - h, and the hypotenuse complete red line of r.

horizontal displacement = ( l2  -  ( l - h )2 ) 1/2  

  
horizontal displacement = ( ( 3.00 m )2 - ( 3.00 m - 0.0581 m )2 ) 1/2 

horizontal displacement = 0.588 m

    

3. An chemical explosion breaks a small asteroid into two pieces.  The larger piece has twice the mass of the smaller piece.  If the explosion released 5.60 x 10 6 kJ, how much energy did each piece acquire.
    
     
0 = m1v'1  +  m2v'2                                               Conservation of Momentum

PEexplosion = 1/2 m1v'12  +  1/2 m2v'22                Conservation of Mechanical Energy

m1 = 2m2                                                               Large piece is twice the mass of the smaller piece.

   
For Momentum to be conserved, the lighter mass must have twice the velocity of the heavier mass.  Of course they will be traveling in opposite directions.

KEsmall particle = 1/2  ( 1/2 mass of large ) x ( twice velocity of large )2   

The smaller particle will have twice the Kinetic Energy of the larger particle.  Thus it will have 2/3 of the total Kinetic Energy.

Kinetic Energy small particle  =  2/3 x 5.60 x 10 6 KJ = 3.73 x 10 6 KJ

Kinetic Energy large particle  =  1/3 x 5.60 x 10 6 KJ = 1.87 x 10 6 KJ
   

4. A 120. kg tackle moving 5.00 m/s collides and holds on to the quarterback, 80.0 kg, moving at right angle to the tackle at 8.50 m/s.  What is their velocity after the collision?
   
    
Conservation of Momentum - X

mqvq = mqv'Sin + mtv'Sin = ( mq  +  mt ) v'Sin
   

Conservation of Momentum - Y

mtvt = mqv'Cos  +  mtv'Cos =  ( mq  +  mt ) v'Cos

   
Solve Conservation of Momentum - X for Sin

                    mqvq 
Sin = --------------------
             ( mq  +  mt ) v'
    

Solve Conservation of Momentum - Y for Cos

                  mtvt 
Cos
= --------------------
             ( mq  +  mt ) v'
    

Divide Conservation of Momentum - X by Conservation of Momentum Y

                      mqvq 
                --------------------
Sin        ( mq  +  mt ) v'                           mqvq 
-------- = -----------------------     = Tan = ---------
Cos     
     mtvt                                        mtvt  
              ----------------------
              
( mq  +  mt ) v'
   

Solve for .


                    mqvq                      80.0 kg x 8.50 m/s
= Tan -1 ( -------- ) = Tan -1 ( -------------------------- ) = 48.6o
                   
  mtvt                            120. kg x 5.00 m/s
   

Solve Conservation of Momentum - X for v'  ( You can also use Y )

mqvq = ( mq  +  mt ) v'Sin   

                mqvq                          80.0 kg x 8.50 m/s
v' = ------------------------- = ---------------------------------------- = 4.53 m/s
        ( mq  +  mt ) Sin       ( 80.0 kg + 120. kg ) Sin 48.6o 
    

They are moving 4.53 m/s at 48.6o to the left of the path of the Tackle.
    

5. Uranium-232  --->  Thorium-228 + alpha    
The alpha particle emitted has a Kinetic Energy of 5.3 MeV (1 MeV = 1.6 x 10 -13 J).  Calculate the momentum and the Kinetic Energy of the Thorium-228.  Calculate the total energy released in the decay.  Assume the mass numbers are the masses of the particle (Valid because we can only justify 2 significant figures).
   
    
0 =  mThv'Th  +  mHev'He                                      Conservation of Momentum

KEHe  =  1/2 mHev'He2                                          Kinetic Energy Definition

KETh  =  1/2 mThv'Th2                                          Kinetic Energy Definition

KEdecay  = KEHe  +  KETh                                   Conservation of Mechanical Energy

   
Solve Conservation of Momentum for v'Th.

           -  mHev'He         4.0 amu v'He 
v'Th = --------------- = -------------------- =  0.018 v'He  
               mTh                228 amu
   

Kinetic Energy of Thorium-228 relative to alpha particle.

    
KETh       228 amu    x ( 0.018 v'He )2 
--------  =  ----------------------------------- =   0.018
KEHe        4.0 amu x v'He2   
  

The Thorium particle has 0.018 the Kinetic Energy of the Alpha Particle.

KETh  =  0.018 x 5.3 MeV = 0.095 MeV

   
Convert Units and Solve Kinetice Energy of Thorium for v'Th.
   

                          1.6 x 10 -13 J
0.095 MeV x -------------------  =  1.5 x 10 -14 J
                              1 MeV
    

                        1.00 g                     1 kg
228 amu x ------------------------ x ------------ = 3.8 x 10 -25 kg
                   6.02 x 10 23 amu       1000 g
    

KETh  =  1/2 mThv'Th2       
   

                 2 KETh  
v'Th =  ( ------------- ) 1/2  =  8.9 x 10 4 m/s
                  mTh 
   

Substitute into the Momentum of Thorium Equation.

pTh  =  mThv'Th  =  3.8 x 10 -25 kg x 8.9 x 10 4 m s -1  =  3.4 x 10 -20 kg m s -1 
      

Table of Contents