Site hosted by Angelfire.com: Build your free website today!
Main Desktop Lessons Desktop Review Desktop Lab Desktop Chart Desktop

      
Elastic Collisions in 2 or 3 Dimensions

Table of Contents

Introduction
Problems
Answers

      
Introduction

When the collision involves 2 or 3 dimensions, the vector nature of momentum must be taken into account.  Kinetic Energy is not a vector.

The deflection angle is measured from the initial motion of the first particle.

The Conservation of Energy creates one equation.

The Conservation of Momentum creates one equation for every dimension.

The number of independent equations must be equal to the number of unknowns.  This means that we must know some of the conditions after the collision.

Charged particles may have deflections before the collision takes place.  We will ignore this in the problems for this section.

Table of Contents

     

Problems

1.     A neutron, 1.009 amu is shot at a stationary helium-4 atom, 4.01 amu with a speed of 4.55 x 10 4 m s -1.  The neutron is deflected at an angle 25.5o to the left of its original path at 3.00 x 10 4 m s -1.  What is the velocity of the helium-4 atom?
   
2. While playing marbles, a shooter with twice the mass of a marble travels at 0.250 m/s until it hits a marble.  If the shooter deflects at 35.0o to the left and the marble leaves at 50.0o to the right, what is the speed of the marble and the shooter?
    
3. A 115 kg guard running forward at 7.00 m/s collides with a 75.0 kg wide receiver running 9.00 m/s coming from the right and perpendicular to the path of the guard.  If the guard bounces off at 5.00 m/s and 40.0o to the left of his original path, what is the velocity of the wide receiver after the collision?
   
4. Use conservation of momentum to show that in a two particle collision, the paths of the particles before and after the collision all lie in one plane if (a) one particle is initially at rest; (b) the two particles have momentum in the same or opposite direction?

Table of Contents

    

Answers

1.     A neutron, 1.009 amu is shot at a stationary helium-4 atom, 4.01 amu with a speed of 4.55 x 10 4 m s -1.  The neutron is deflected at an angle 25.5o to the left of its original path at 3.00 x 10 4 m s -1.  What is the velocity of the helium-4 atom?
   

Conservation of Energy                         vn  =  v'He  -  v'n  

Conservation of Momentum - X            mnvn  =  mnv'nCosn  +  mHev'HeCosHe   

Conservation of Momentum - Y            0 = mnv'nSinn  -  mHev'HeSinHe   

     
We have three independent equations and two unknowns.   Solve Conservation of Energy for v'He.

    
v'He  =   v'n  +  vn   =  3.00 x 10 4 m s -1  +  4.55 x 10 4 m s -1 =  7.55 x 10 4 m s -1 

     
Use Conservation of Momentum - X to solve for He.

     
                          mnvn  -  mnv'nCosn          
He  = Cos -1 ( ------------------------------ ) 
                                 mHev'He  
    

                          1.009 amu x  4.55 x 10 4 m s -1 -  1.009 amu x 3.00 x 10 4 m s -1 Cos 25.5o 
He  = Cos -1 ( -------------------------------------------------------------------------------------------------- )  = 86.5o
                                        4.01 amu x 7.55 x 10 4 m s -1 
     

   

   

2. While playing marbles, a shooter with twice the mass of a marble travels at 0.250 m/s until it hits a marble.  If the shooter deflects at 35.0o to the left and the marble leaves at 50.0o to the right, what is the speed of the marble and the shooter?
    

Conservation of Energy                         vs  =  v'm  -  v's  

Conservation of Momentum - X            msvs  =  msv'sCoss  +  mmv'mCosm   

Conservation of Momentum - Y            0 = msv'sSins  -  mmv'mSinm   

                                                                ms = 2mm  

    
Substitute values for Sines and Cosines into Momentum Equations.  Also substitute 2mm  for ms.

2mmvs =  2mmv'sCos 35.0o  +  mmv'mCos 50.0o 

0 =   2mmv'sSin 35.0o  -  mmv'mSin 50.0o 
   

2mmvs  =  1.64 mmv's  +  0.643 mm v'm   

0  =  1.15  mmv's  -  0.766 mm v'm   
   

Add the two equations.

2mmvs  = 1.64 mmv's  + 1.15  mmv's  +   0.643 mm v'm   -  0.766 mm v'm 

2mmvs  = 2.79 mmv's  -   0.123 mm v'm 

   
Divide both sides by 2mm.

vs  =  1.395 v's  -  0.0615 v'm   

   
Solve Conservation of Energy for v'm and Substitute into the previous equation.

vs  =  v'm  -  v's    =>  v'm  =  vs  +  v's   

vs  =  1.395 v's  -  0.0615 vs  -  0.0615 v's   
    

Solve for v's.

( 1.395  -  0.0615 ) v's  =  ( 1.0000 - 0.7045 ) vs  
   

            ( 1.0000 - 0.7045 ) 0.250 m/s
v's  =  --------------------------------------- =  0.0554 m/s  
                   ( 1.395  -  0.0615 )
    

Solve the Conservation of Energy for v'm.

vs  =  v'm  -  v's    =>  v'm  =  vs  +  v's   =  0.250 m/s  +  0.0554 m/s  =  0.305 m/s
    

    

   

3. A 115 kg guard running forward at 7.00 m/s collides with a 75.0 kg wide receiver running 9.00 m/s coming from the right and perpendicular to the path of the guard.  If the guard bounces off at 6.00 m/s and 40.0o to the left of his original path, what is the velocity of the wide receiver after the collision?
   
    
Conservation of Energy                         vg  -  v=  v'w  -  v'g  

Conservation of Momentum - X            mwvw  =  mgv'gCosg  -  mwv'wCosw   

Conservation of Momentum - Y            mgvg = mgv'gSing  +  mwv'wSinw   

    
Solve Conservation of Energy for v'w

v'w  =  vg  +  vw   +   v'g  =  7.00 m/s - 9.00 m/s  +  6.00 m/s  =  4.00 m/s
   

   

Solve Conservation of Momentum - X for w.

                         mgv'gCosg  -  mwvw  
w  =  Cos -1 ( ------------------------------ )
                                mwv' 
   

                         115 kg x 6.00 m/s x Cos 40.0o  -  75.0 kg x 9.00 m/s
w  =  Cos -1 ( ---------------------------------------------------------------------- )  =  119o
                                        75.0 kg x 4.00 m/s
  

This is not a logical answer because the wide receiver would be bounced forward.   w must be on the same side as  g.  Conservation of Momentum - X becomes   

mwvw  =  mgv'gCosg  +  mwv'wCosw   

   
Now when we solve Conservation of Momentum - X for w.
   

                        75.0 kg x 9.00 m/s  - 115 kg x 6.00 m/s x Cos 40.0o  
w  =  Cos -1 ( ---------------------------------------------------------------------- )  =  60.8o
                                        75.0 kg x 4.00 m/s
       

   

   

4. Use conservation of momentum to show that in a two particle collision, the paths of the particles before and after the collision all lie in one plane if (a) one particle is initially at rest; (b) the two particles have momentum in the same or opposite direction?
   
 

Table of Contents