Site hosted by Angelfire.com: Build your free website today!
Main Desktop Lessons Desktop Review Desktop Lab Desktop Chart Desktop

      
Elastic Collisions in One Dimension

Table of Contents

Introduction
Problems
Answers

      
Introduction

Elastic Collision     Collision in which Kinetic Energy is Conserved.  
     

We are going to restrict problems in this section to elastic collisions in one dimension.  Two particles are moving along the same axis with initial velocities of v1 and v2.  After the collision, their velocities are v'1 and v'2.  A positive and negative direction must be specified.

Conservation of Momentum   m1v1  +  m2v2  =  m1v'1  +  m2v'2  

Conservation of Energy         m1v12  + m2v22  = m1v'12  +  m2v'22  
   

 Rephrasing the Conservation of Momentum 

m1( v1  -  v'1 )  =  m2 ( v'2  -  v2 )

 Rephrasing the Conservation of Energy 

m1( v12  -  v'12 )    =  m2 ( v'22  -  v22 )   =>   m1( v1  -  v'1 )( v1  +  v'1 ) = m2 ( v'2  -  v2 )( v'2  +  v2 )

 Remember  a2 - b2  = ( a - b ) ( a + b ) 
     

 Dividing Conservation of Energy by Conservation of Momentum 

v1  +  v' =  v'2  +  v2  
   

 Rewriting this equation 

v1  -   v=  v'2  -  v'                    This is the best form to use when working problems. 

 Important interpretation of this equation - For any elastic collision, the relative speed of the two particles after the    
 collision is the same as the relative collision before the collision.  This is independent of the masses of the particles. 

Table of Contents

     

Problems

1.     A particle of mass m moving with at speed v has an elastic collision in one dimension with a stationary particle of the same mass.  What are the speeds of the two particles.
   
2. A proton, 1.01 amu, is shot at a stationary carbon-12 nucleus, 12.00 amu, with a velocity of 
5.00 x 10 4 m/g.  What are their velocities after an elastic collision in one dimension?
   
3. A golf ball, 0.750 kg, is thrown at a golf ball, 50.0 g.  The golf ball is moving at 90.0 km/h to the right while the golf ball is moving 15.0 m/g to the left.  What are their velocities after an elastic collision in one dimension?
   
4. A car, 1800. kg, going 150. km/h rear ends a truck, 5500. kg going 100. km/h.  What are their velocities after an elastic collision in one dimension?

Table of Contents

    

Answers

1.     A particle of mass m moving with at speed v has an elastic collision in one dimension with a stationary particle of the same mass.  What are the speeds of the two particles.
   
   
Conservation of Momentum       mv = mv'1  +  mv'2     =>   v  =  v'1  +  v'2     (Only true because of same mass)

Conservation of Energy              v =  v'2  -  v'1                 (Remember, 2nd ball was initially at rest.)

    
We now have two unknowns and two independent equations.  We can now solve for the two unknowns.

v'1  +  v'2  =  v'2  -  v'1                   (both sides are equal to v)     solve for v'1  

2v'1  =  v'2  -  v'2  =  0          or   v'1  =  0

Now substitute into either of the original equations.

v = v'1  +  v'2   =  0  +  v'2    thug       v'2 =  v

Pool players observe this if no spin is applied to the ball.  It is very important that the two balls have the same mass.
     

   

   

2. A proton, 1.01 amu, is shot at a stationary carbon-12 nucleus, 12.00 amu, with a velocity of 
5.00 x 10 4 m/g.  What are their velocities after an elastic collision in one dimension?
   
   
Conservation of Momentum          mpvp  =  mpv'p  +  mcv'c  

Conservation of Energy                 vp  =  v'c  -  v'p   

    
Solve Conservation of Energy for v'p          v'p  =   v'c  -  vp      and Substitute into Conservation of Momentum.

mpvp  =  mpv'c  -  mpv'p   +  mcv'c            Now solve for v'c  

   
           2 mpvp          2 x 1.01 amu x 5.00 x 10 4 m s -1 
v'c = -------------- = --------------------------------------------- = 7.76 x 10 3 m s -1  
          mp  +  m          1.01 amu  +  12.00 amu
    

Solve for v'p using Conservation of Energy

 v'p  =   v'c  -  vp  =  7.76 x 10 3 m s -1 -  5.00 x 10 4 m s -1  =  - 4.22 x 10 4 m s -1  

Observe that the proton has bounced backward after the collision.
    

   

   

3. A golf ball, 0.750 kg, is thrown at a golf ball, 50.0 g.  The golf ball is moving at 90.0 km/h to the right while the golf ball is moving 15.0 m/g to the left.  What are their velocities after an elastic collision in one dimension?
   
   
90.0 km        1 h            1000 m
------------ x ----------  x  ------------ = 25.0 m g -1  = vs              
Right is positive and Left is negative.
      h            3600 g           1 km
    

Conservation of Momentum          msvs  + mgvg =  msv's  +  mgv'g  

Conservation of Energy                 vs  -  vg  =  v'g  -  v's   

    
Solve Conservation of Energy for v'g      v'g  = v -  vg +  v's    Substitute into Conservation of Momentum.        

 msvs  + mgvg =  msv's  +  mgvs  -  mgvg  +  mgv's              Now solve for v's   

    
            msvs  +  2 mgvg  - mgvs         750. g x 25.0 m/gs + 2 x 50.0 g x ( - 15.0 m/s ) - 50.0 g x 25.0 m/s
v's  =  --------------------------------- =   -------------------------------------------------------------------------------------
                  ms   +   mg                                      750. g  +  50.0 g 

     
v's  =  20.0 m/s    ( To the Right )

   
Now Substitute into the equation for v'g.

v'g  = v -  vg +  v's  =  25.0 m/s  +  15.0 m/s  +  20.0 m/s  =  60.0 m/s   (To the Right)
   

   

   

4. A car, 1800. kg, going 150. km/h rear ends a truck, 5500. kg going 100. km/h.  What are their velocities after an elastic collision in one dimension?
   
     
Conservation of Momentum         
mcvc  + mtvt =  mcv'c  +  mtv't  

Conservation of Energy                 vc  -  vt  =  v't  -  v'c   

    
Solve Conservation of Energy for v'g      v't  = vc   -  vt  +  v'c    Substitute into Conservation of Momentum.        

 mcvc  + mtvt =  mcv'c  +  mtvc  -  mtvt  +  mtv'c              Now solve for v'c   

    
            mcvc  +  2 mtvt  - mtvc         1800. g x 150. km/h + 2 x 5500. kg x 100. km/h - 5500 kg x 150. km/h
v'c  =  --------------------------------- =   ------------------------------------------------------------------------------------------
                  mc   +  mt                                      1800. kg  +  5500. kg 

     
v'c  =  74.7 km/h    ( To the Right )

   
Now Substitute into the equation for v'g.

v't  = vc   -  vt  +  v'c   =  150. km/h - 100. km/h + 74.7 km/h  =  124.7 km/h   (To the Right)
   

Table of Contents