Site hosted by Angelfire.com: Build your free website today!
Main Desktop Lessons Desktop Review Desktop Lab Desktop Chart Desktop

      
Conservation of Momentum

Table of Contents

Introduction
Problems
Answers

      
Introduction

System Set of objects that interact with each other.
   
Isolated System       The only forces present are those between the objects of the system. The sum of all forces will be zero.
    
Law of Conservation     of Momentum The total momentum of an isolated system of bodies remains constant.

momentum before = momentum after

m1v1  +  m2v2  =  m1v'1  +  m2v'2  

Table of Contents

     

Problems

1.     A 1500. kg car moving at 120. km/h hits and attaches to a stationary 200. kg cart.  How fast are they moving after the collision? 
    
2. Sam, 110. kg, is on a bicycle, 10.0 kg, going 8.00 m/s down the concourse when he picks up Rachel, 45.0 kg, walking at 2.00 m/s in the opposite direction.  How fast are they moving after the collision?
   
3. James, 95.0 kg, is on a bicycle, 10.0 kg, going 7.00 m/s down the concourse when he picks up Lela, 50.0 kg, walking at 1.50 m/s in the same direction.  How fast are they moving after the collision?
   
4. Laneka, 75.0 kg, is on a bicycle, 10.0 kg, going 40.0 km/h when she throws a bag she was carrying behind her at 10.0 m/s.  If she is now moving 45.0 km/h, what was the mass of the bag?

Table of Contents

    

Answers

1.     A 1500. kg car moving at 120. km/h hits and attaches to a stationary 200. kg cart.  How fast are they moving after the collision? 
    
   
mcarvcar  +  mcartvcart  =  mcarv'car  +  mcartv'cart           

v'car   =  v'cart  =  v'

mcarvcar  +  mcartvcart  = ( mcar  +  mcart ) v' 
   

           mcarvcar  +  mcartvcart          1500. kg x 120. km/h + 200. kg x 0 km/h
v' = ----------------------------------- = ---------------------------------------------------------- = 106 km/h
            ( mcar  +  mcart )                               ( 1500. kg + 200. kg ) 
    

   

   

2. Sam, 110. kg, is on a bicycle, 10.0 kg, going 8.00 m/s down the concourse when he picks up Rachel, 45.0 kg, walking at 2.00 m/s in the opposite direction.  How fast are they moving after the collision?
   
   
mSam + bicyclevSam + bicycle  +  mRachelvRachel  =  mSam + bicyclev'Sam + bicycle  +  mRachelv'Rachel   

v'Sam + bicycle  =  v'Rachel  =  v'

mSam + bicyclevSam + bicycle  +  mRachelvRachel  =  ( mSam + bicycle + mRachel ) v'
    

        mSam + bicyclevSam + bicycle  +  mRachelvRachel  
v' = ------------------------------------------------------------              
  vSam + bicycle will be the positive direction.
                   mSam + bicycle + mRachel 
    

        120. kg x 8.00 m/s + 45.0 kg x ( -2.00 m/s) 
v' = ---------------------------------------------------------- = 5.27 m/s  
                     120. kg  +  45.0 kg
   

   

   

3. James, 95.0 kg, is on a bicycle, 10.0 kg, going 7.00 m/s down the concourse when he picks up Lela, 50.0 kg, walking at 1.50 m/s in the same direction.  How fast are they moving after the collision?
   
    
mJames + bicyclevJames + bicycle  +  mRachelvRachel  =  mJames + bicyclev'James + bicycle  +  mRachelv'Rachel 

mJames + bicyclevJames + bicycle  +  mRachelvRachel  =  ( mJames + bicycle + mRachel ) v'

    
       
mJames + bicyclevJames + bicycle  +  mRachelvRachel  
v' = ----------------------------------------------------------------              
  vJames + bicycle will be the positive direction.
                   mJames + bicycle + mRachel 
    

         105.0 kg x 7.00 m/s  +  50.0 kg x 1.50 m/s
v' = ---------------------------------------------------------- = 5.23 m/s
                     105.0 kg + 50.0 kg
   

   

   

4. Laneka, 75.0 kg, is on a bicycle, 10.0 kg, going 40.0 km/h when she throws a bag she was carrying behind her at 10.0 m/s.  If she is now moving 45.0 km/h, what was the mass of the bag?
   
    
mLanekav + mbagv = mLanekav'Laneka  +  mbagv'bag                     vLaneka = vbag = v
   

10.0 m       3600 s       1 km
---------- x ----------- x ----------- = 36.0 km/h
    s             1 h           1000 m
   

mbagv - mbagv'bag = mLanekav'Laneka  -  mLanekav            Factor out mbag.
   

               mLanekav'Laneka - mLaneka
mbag = -----------------------------------------                            Forward direction is positive.
                             v -  v'bag 
   

               75.0 kg x 45.0 km/h - 75.0 kg x 40.0 km/h
mbag = ----------------------------------------------------------- = 4.93 kg
                       40.0 km/h - ( -36.0 km/h)
    

Table of Contents