HACKERNEL – DESIGN AND IMPLEMENTATION OF NEW CPU SCHEDULING ALGORITHMS IN LINUX

   PROJECT MEMBERS 

 :

                      


    1) K.Sarnath





     2) V.Sriram





     3) S.Sriram

  PROJECT GUIDE 

:

 



   Asst. Professor Mrs G.Aghila


INTRODUCTION 

 
 While the processor manufacturers are busy increasing processor celerities, nature had preferred a better alternative – Multitasking. To get a better throughput  with better satisfaction , nature did not prefer a faster brain, but a multi tasking one. We see, hear, feel, think, act and do more, all together. All in perfect harmony. Even when the Giga’s reached by the processors are to be admired, one could not simply go without admiring the human brain. Though slower it can perform many processes concurrently with a rhythm.

When the nature itself preferred  multi tasking, the best solution to the increasing demands of speeds can be nothing else. While the processor speeds increase in one hand, demands also increase in the other. So an increased speed can not be a  better solution. Kudos to Dennis Ritchie and Ken Thompson. Great forethought they had!

            The very concept of multitasking is the virtue of  Scheduler. A CPU scheduler is one that schedules the CPU time between the processes contingent in the queue so that a required criterion is met.


We were taken aback by the phenomenon called Linux. Yes, in the world of established software Goliaths, if there is one David, it is Linux.Out of interest and curiosity we started taking Linux seriously. It is one that is both free and serious! 

            Linux is successful because of the flexibilty and liberty it offers .This liberty gave us an opportunity to experiment with its CPU Scheduler. This provided an excellent   platform to test our fundamentals and mettle.      

Afresh from exposure to Operating Systems concepts and Linux, we thought of  trying out new CPU scheduling algorithms for Linux. 

An honest attempt has been made to improve the performance of Linux system by implementing new CPU scheduling algorithms . This report depicts the rocky terrain  traversed, the difficulties overcome and the destination arrived.

The second chapter gives a formal introduction to Linux . The third chapter chapter  explains the Linux kernel in a broader sense. A general discussion on   scheduling and  scheduling algorithms follows in the fourth chapter. The fifth chapter concerns with the existing CPU scheduler in Linux. The fair all scheduler is illustrated in the sixth chapter. The core of this project , the Hackernel scheduling algorithm is explained in seventh chapter. The testing routines and the related informations are explained in the eigth chapter. It also contains the test results and graphs. The ninth chapter concludes the  report , which is followed by a list of references.

Every explanation of algorithm in this report , contains a discussion on its logic, implementation and a theoretical analysis.
                                                  

                                                                  LINUX
2.1 Introduction to linux
Linux is a phenomenon of the Internet. Born out of the hobby project of a student it has grown to become more popular than any other freely available operating system. To many Linux is an enigma. How can something that is free be worthwhile? In a world dominated by a handful of large software corporations, how can something that has been written by a bunch of ``hackers'' (sic) hope to compete? How can a software contributed to by many different people in many different countries around the world have a hope of being stable and effective? It is  yet stable , effective and competent. Many Universities and research establishments use it for their everyday computing needs. Linux is used to browse the web, host web sites, write theses, send electronic mail and, as always with computers, to play games. Linux is emphatically not a toy rather it is a fully developed and professionally written operating system used by enthusiasts all over the world. 

 
Linux is a multitasking and multi-user OS that runs under Intel 386 (i386) architecture and Alpha machines. Linux is a boon for students who are interested in learning OS concepts. It also offers a favorable platform for networking and competes well with WIN NT in this regard. 

 Linux has a remarkable property of extending the kernel code in the form of kernel modules. Kernel modules are piece of code written by an enthusiastic user, which can be dynamically attached and removed from the kernel. Usually kernel modules are written to launch device drivers. This capability of Linux makes it work with a variety of devices. Parts of the kernel can be implemented by directly hacking the kernel or by means of kernel modules. Once again this factor is a configuration option for the kernel hacker while he is compiling a hacked kernel. Another important feature in Linux is its support for multiple file-systems. This feature makes Linux very distinct from other Operating Systems. Linux offers SMP (symmetric multi processing) support .i.e. Linux can run not only on uniprocessor systems but also on multi-processor systems.

2.2 Linux Basics 


This subsection details about Linux in a broad spectrum. The entire operating system can be divided as:

Memory Management:

     Linux makes use of the paging hardware inorder to implement demand paging and virtual memory.

 Process Management :

           The process management subsystem of linux mostly concerns with timer handling and scheduling. ‘Task_struct’ is one basic data structure that is used in the Linux kernel for process management.

Interrupt Handling  and Device management   :

           The basic data structure used by the linux kernel for handling interrupts is as follows.

        struct irqaction {


  Void (*handler)(int, void *, struct pt_regs *);


  unsigned long flags;


  unsigned long mask;


  const char *name;


  void *dev_id;


  struct irqaction *next;


};

File Systems :

    
One of the most important features of Linux is its support for many different file systems. This makes it very flexible and  able to coexist with many other operating systems.

2.3 Summary  


This chapter has dealt with the linux basics. The following chapter concerns with the Linux Kernel and its mechanisms.

                THE LINUX KERNEL


The Linux kernel follows many mechanisms to circumvent issues in multitasking. Some of them are as follows

a)   Bottom Half Handling

b) Task Queues

c) Timers

d) Wait Queues

e) Spin Locks

f) Semaphores

g) Kernel Modules

3.1 Bottom Half Handling


There are few instances when we have to postpone the works to be done currently. A good example of this is during interrupt processing. When the interrupt was asserted, the processor stopped what it was doing and the operating system delivered the interrupt to the appropriate device driver. Device drivers should not spend too much time handling interrupts as, during this time, nothing else in the system can run. There is often some work that could just as well be done later on. Linux's bottom half handlers were invented so that device drivers and other parts of the Linux kernel could queue work to be done later on. 

 (  For implementation details -> /usr/src/linux/kernel/softirq.c. run_bottom_halves() )

3.2 Task Queues


Task Queues are nothing but queues of tasks to be executed later. Task Queues are used in conjunction with bottom half handlers. There are three task queues created and maintained by the kernel. 

           They are

(i) timer

(ii) immediate

(iii) scheduler

3.3 Timers


Timers are used to schedule tasks at specific intervals or at relatively specific time. The following data structure is used:

struct timer_list {

        struct timer_list *next; /* MUST be first element */

        struct timer_list *prev;

        unsigned long expires;

        unsigned long data;

        void (*function)(unsigned long);

};

   ( reference :- /usr/src/linux/include/linux/timer.h )

3.4 Wait-Queues


There are many times when a process must wait for a system resource.The Linux kernel uses a simple data structure, a wait queue which consists of a pointer to the processes task_struct and a pointer to the next element in the wait queue. 

When processes are added to the end of a wait queue they can either be interruptible or uninterruptible. Interruptible processes may be interrupted by events such as timers expiring or signals being delivered whilst they are waiting on a wait queue. The waiting processes state will reflect this and either be INTERRUPTIBLE or UNINTERRUPTIBLE. As this process cannot run now the scheduler is called , which  selects a new process to run. The waiting process will be now suspended. When the wait queue is processed, the state of every process in the wait queue is set to RUNNING. If the process has been removed from the run queue, it is put back onto the run queue. The next time the scheduler runs, the processes that are on the wait queue are now candidates to be run as they are now no longer waiting. When a process on the wait queue is scheduled the first thing that it will do is remove itself from the wait queue.


The wait_queue has the following structure:


struct  wait_queue {


     struct task_struct *task;


     struct wait_queue *next;


}

( ref: /usr/src/linux/include/linux/wait.h )


3.5 Spinlocks

These are better known as spin locks and they are a primitive way of protecting a data structure or piece of code. They only allow one process at a time to be within a critical region of code. They are used in Linux to restrict access to fields in data structures, using a single integer field as a lock. Each process wishing to enter the region attempts to change the lock's initial value from 0 to 1. If its current value is 1, the process tries again, spinning in a tight loop of code. The access to the memory location holding the lock must be atomic, the action of reading its value, checking that it is 0 and then changing it to 1 cannot be interrupted by any other process. Most CPU architectures provide support for this via special instructions but you can also implement buzz locks using uncached main memory. 

When the owning process leaves the critical region of code it decrements the buzz lock, returning its value to 0. Any processes spinning on the lock will now read it as 0, the first one to do this will increment it to 1 and enter the critical region. 

 (ref: /usr/src/linux/include/asm/spinlock.h)

3.6 Semaphores

Semaphores are used to protect critical regions of code or data structures.  It would be very dangerous to allow one process to alter a critical data structure that is being used by another process. Linux uses semaphores to allow just one process at a time to access critical regions of code and data. All other processes wishing to access this resource will be made to wait until it becomes free. The waiting processes are suspended, other processes in the system can continue to run as normal. 

3.7 Kernel Modules

Linux is a monolithic kernel i.e., it is one, single, large program where all the functional components of the kernel have access to all of its internal data structures and routines. The alternative is to have a micro-kernel structure where the functional pieces of the kernel are broken out into separate units with strict communication mechanisms between them. Linux modules are lumps of code that can be dynamically linked into the kernel at any point after the system has booted. They can be unlinked from the kernel and removed when they are no longer needed. Mostly Linux kernel modules are device drivers, pseudo-device drivers such as network drivers, or file-systems. 

3.8 Linux Source files and directory structure:

Since Linux is a open source software, all CDROM installations of Linux  carry with them Linux source files. The Linux source files are usually found in the directory /usr/src/linux. They are organized in the following directory structure. At the very top level of the source tree, “/usr/src/linux” a number of directories exist. 

arch 

The arch subdirectory contains all of the architecture specific kernel code. It has further subdirectories, one per supported architecture, for example i386 and alpha. 

include 

The “include” subdirectory contains most of the include files needed to build the kernel code. It too has further subdirectories including one for every architecture supported. The include/asm subdirectory is a soft link to the real include directory needed for this architecture, for example include/asm-i386. To change architectures you need to edit the kernel makefile and rerun the Linux kernel configuration program. 

init 

This directory contains the initialization code for the kernel and it is a very good place to start looking at how the kernel works. 

mm 

This directory contains all of the memory management code. The architecture specific memory management code lives down in arch/*/mm/, for example arch/i386/mm/fault.c. 

drivers 

All of the system's device drivers live in this directory. They are further sub-divided into classes of device driver, for example block. 

ipc 

This directory contains the kernels inter-process communications code. 

modules 

This is simply a directory used to hold built modules. 

fs 

All of the file system code. This is further sub-divided into directories, one per supported file system, for example vfat and ext2. 

kernel 

The main kernel code. Again, the architecture specific kernel code is in arch/kernel. 

net 

The kernel's networking code. 

lib 

This directory contains the kernel's library code. The architecture specific library code can be found in arch/lib/. 

scripts 

This directory contains the scripts (for example awk and tk scripts) that are used when the kernel is configured. 

3.9 Existing documentation of linux kernel:

            There is a lot of documentation available both in electronic form on the Internet and in books,  both Linux-specific and pertaining to general UNIX questions.  The most prudent would be looking into the documentation subdirectories on any Linux ftp site for the LDP (Linux Documentation Project) books. 

           There are various readme's in the kernel Documentation/ subdirectory. These typically contain kernel-specific installation notes for some drivers for example. The  /usr/src/linux/Documentation/00-INDEX for a list of what  is contained in each file..

            Detailed and explicit Documentation is not available for linux in the net. All the documentaions cover the overall structure of the OS rather than any stuff with reference to the source code. Detailed works are going on over the net for documenting the linux kernel. Some of the useful websites that contain wealth of information about linux are as follows.

URL address of Linux kernel Book: http://www.linuxdoc.org/LDP/tlk/tlk.html
 (This book contains an overall description of the Linux OS.)

URL of list of utilities for Linux.

http://linux.tucows.com/conhtml/dev_libraries.html
URL  of assembly language in Linux.
http://lightning.voshod.com/asm/Assembly-HOWTO.html
URL  address of  UNIX-FAQ site.

http://www.erlenstar.demon.co.uk/unix/faq_8.html
A site about the conceptual architecture of the LINUX KERNEL.

http://plg.uwaterloo.ca/~itbowman/CS746G/a1/
A site for intel-386 manuals. (mostly in PDF format).

http://x86.ddj.com/intel.doc/386manuals.htm
(These manuals may be useful for detailed study of Linux OS.)


 Other than these sites the LDP over the net (Linux Documentation Project) carries a wealth of information about Linux. It’s URL address is http://www.linuxdoc.org/. This site is also mirrored in so many other linux sites.

3.10 Source Code Compilation

                     The linux source code can be compiled to generate a kernel of our specification.The following are the steps to be followed  to compile the kernel.

1. Configure the kernel to include the desired features.(make menuconfig)

2. Set the dependencies of the related files.(make dep)

3. Compile the kernel (make bzImage or make zImage or make zLilo) 

All these are done from the top level of the source files.


3.11 Summary

            This chapter has thrown light on major concepts and mechanisms of the linux kernel. The next chapter deals with schedulers. The chapter on schedulers includes a general discussion of the standard CPU scheduling algorithms. Their pros and cons are also discussed.

SCHEDULERS 

             A CPU scheduler serves as an arbiter to choose between  processes that contend for the CPU. A CPU scheduler can use any algorithm for accomplishing its task.

The various sub-topics covered in this section are:

(i) MULTITASKING.

(ii) CPU SCHEDULING.

(iii) REQUIREMENTS OF A GOOD SCHEDULER.

4.1 MULTITASKING


Linux is a multitasking Operating system. It makes use of the hardware support of the processor on which it executes. Currently Linux runs on Intel386 and Alpha Machines. In a multitasking environment, so many processes at a time contend for CPU. There exists always a mechanism to pre-empt the currently running process and select the next. It’s the CPU scheduler’s responsibility to ensure fairness and efficiency. 

4.1.1 Problems to be addressed in a multitasking system

a) The critical section problem and deadlocks:

            Multitasking Operating systems should take care of critical sections of code. A critical section of code is a one, which only one process can execute at a time. Deadlock is a condition, in which processes mutually wait for each other, resulting in a situation, in which no process runs. There exists in the OS world, a lot of analogy for this problem. Some of them are as follows.

(i) Producer / consumer problem (bounded buffer / unbounded buffer)

(ii) Dining philosopher problem

(iii) Reader/writers problem

There exist so many algorithms for solving these synchronization problems. Some of them are

(i) Bakery algorithm

(ii) Hardware solutions by having special instructions  (exp. test_and_set function.)

(iii) Semaphores (The most common and powerful)

b) Inter-Process communication:


Inter-process communication is one of the novel features of a multi-tasking operating system. The existence of a clipboard in Windows 95 helps in inter process communication to a great extent. Whereas in Linux pipes, message queues and semaphores help in inter-process communication. There also exists various signals through which parents and child may communicate.  In general there exist two complementary schemes:

(i) Shared memory.

(ii) Message systems.

4.2 CPU SCHEDULING

            CPU scheduling is determining which process to  run ,when there are multiple runnable processes. It is important because it can have a big effect on resource utilization and the overall performance of the system. Recent systems (Windows NT) are back to having sophisticated CPU scheduling algorithms. 

Basic assumptions behind most scheduling algorithms: 

· There is a pool of runnable processes contending for the CPU. 

· The processes are independent and compete for resources. 

· The process of the scheduler is to distribute the scarce resource of the CPU to the different processes ``fairly'' (according to some definition of fairness) and in a way that optimizes some performance criteria. 

In general, these assumptions are starting to break down. First of all, CPUs are not really that scarce - almost everybody has several, and pretty soon people will be able to afford lots. Second, many applications are starting to be structured as multiple cooperating processes. So, a view of the scheduler as mediating between competing entities may be partially obsolete. 

4.2.1 PROCESS BEHAVIOUR:

            A CPU-I/O burst cycle is explained as follows. A process will run for a while (the CPU burst), perform some I/O (the I/O burst), then run for a while more (the next CPU burst).  

· I/O Bound processes: 

Processes that perform lots of I/O operations are called as I/O processes. Each  I/O operation is followed by a short CPU burst to process the I/O, then more I/O happens. 

· CPU bound processes: 

A CPU process is a one that performs lots of computation and do little I/O. Tend to have a few long CPU bursts. 

            One of the things a scheduler will typically do is switch the CPU to another process when one process does I/O. The I/O will take a long time, and don't want to leave the CPU idle while wait for the I/O to finish. 

4.2.2 PROCESS-STATES:

· Running - process is running on CPU. 

· Ready - ready to run, but not actually running on the CPU. 

· Waiting - waiting for some event like I/O to happen. 

4.2.3 PLACES WHERE SCHEDULER IS CALLED: 

· When process switches from running to waiting. Could be because of I/O request, because wait for child to terminate, or wait for synchronization operation (like lock acquisition) to complete. 

· When process switches from running to ready - on completion of interrupt handler, for example. Common example of interrupt handler - timer interrupt in interactive systems. If scheduler switches processes in this case, it has pre-empted the running process. Another common case of interrupt handler is the I/O completion handler. 

· When process switches from waiting to ready state (on completion of I/O or acquisition of a lock, for example). 

· When a process terminates. 

4.2.4 EVALUATION OF SCHEDULING ALGORITHMS:

· CPU Utilization: The CPU usage per unit time.

· Throughput: Number of processes completed per unit time. 

· Turnaround Time: Mean time from submission to completion of process. 

· Waiting Time: Amount of time spent ready to run but not running. 

· Response Time: Time between submission of requests and first response to the request. 

· Scheduler Efficiency: The scheduler doesn't perform any useful work, so any time it takes is pure overhead. So, need to make the scheduler very efficient. 

4.2.5 COMMON SCHEDULING ALGORITHMS:

First-Come, First-Served (FCFS):

 
One ready queue is necessary. The OS runs the process at head of queue. 

New processes come in at the end of the queue. A process does not give up CPU until it either terminates or performs I/O. 

Shortest-Job-First (SJF):

            SJF can eliminate some of the variance in Waiting and Turnaround time. In  fact, it is optimal with respect to average waiting time. The logic of this algorithm is to give priority to the shortest process available. This is a highly theoretical algorithm and can only be implemented approximately.

 Pre-emptive vs. Non-pre-emptive SJF scheduler:

Pre-emptive scheduler reruns scheduling decision when process becomes ready. If the new process has priority over running process, the CPU pre-empts the running process and executes the new process. Non-pre-emptive scheduler only does scheduling decision when running process voluntarily gives up CPU. In effect, it allows every running process to finish its CPU burst. 

Priority Scheduling:

Each process is given a priority, then CPU executes process with highest priority. If multiple processes with same priority are runnable, some other criteria is used- typically FCFS. SJF is an example of a priority-based scheduling algorithm. 

Round Robin:

 RR is similar to FCFS but with pre-emption. It has a time quantum or time slice. Let the first process in the queue run until it expires its quantum (i.e. runs for as long as the time quantum), then run the next process in the queue. Implementing round robin requires timer interrupts. It looks like one has got a CPU that is 1/n as powerful as the real CPU, where n is the number of processes. Problem with a small quantum is the context switch overhead.

 Multilevel Queue Scheduling: 

This is similar to RR, except that it has multiple queues. This involves classifying processes into separate categories and gives a queue to each category. It is also possible to allocate a percentage of the CPU to each queue.

Multilevel Feedback Queue Scheduling:

 Like multilevel scheduling, except processes can move between queues as their priority changes. It can be used to give I/O bound and interactive process CPU priority over CPU bound processes. It can also prevent starvation by increasing the priority of processes that have been idle for a long time. 

4.2.6 ANOMALIES: 

· Priority interacts with synchronization to create a really nasty effect called priority inversion. A priority inversion happens when a low-priority thread acquires a lock, then a high-priority thread tries to acquire the lock and blocks. Any middle-priority threads will prevent the low-priority thread from running and unlocking the lock. In effect, the middle-priority threads block the high-priority thread. Using priority inheritance can circumvent this problem. Any time a thread holds a lock that other threads are waiting on, the thread is given the priority of the highest-priority thread waiting to get the lock. Problem is that priority inheritance makes the scheduling algorithm less efficient and increases the overhead. 

· Pre-emption can interact with synchronization in a multiprocessor context to create another nasty effect - the convoy effect. One thread acquires the lock, then suspends. Other threads come along, and need to acquire the lock to perform their operations. Everybody suspends until the lock that has the thread wakes up. At this point the threads are synchronized, and will convoy their way through the lock, serializing the computation. So, this drives down the processor utilization. 

4.3 REQUIREMENTS OF A GOOD SCHEDULER:

The following are the requirements of a good scheduler.

1.     Any process which engages the CPU for long, should be given less priority.

2.   Any process, which relinquishes the CPU very soon, should be given more   priority. Logically such processes often wait for an I/O event to happen, which can be conveniently overlapped with  a CPU burst of another waiting process, thereby minimizing the wait time. 

3.   Any scheduling algorithm, which reduces the average wait time of a given set of processes, is always welcome. But such an algorithm may not give special preference to I/O processes rather it might try to be fair to both CPU and I/O processes.

4. Any scheduling algorithm, which gives preference to I/O processes (i.e. interactive process), is always a welcome from a user standpoint of view. Since such a scheduler gives preference to interactive processes, the user often feels convenient with his front-end, also it is an opportunity for the scheduler to give chance to another contending process as soon as the current I/O process exits the runqueue to perform I/O.

5. A perfect scheduling algorithm should be robust even under heavy loads. To 

achieve such a condition, the scheduling parameters should be dynamic and vary with the nature of the processes.

6.   Ultimately any scheduling algorithm should have inherent logic to prevent starvation. 

Most of the standard CPU scheduling algorithms satisfy some or more of the above conditions. But still, if the scheduler tries to optimize one criterion, it has to compromise with some other. Queuing models are also pursued for scheduling. In this case, the CPU is considered as the server and the processes wait in a queue awaiting CPU service. Modern Operating systems follow robust scheduling algorithms. Still so much research are pursued in this field. 

4.4 Summary

            This chapter has dealt with standard CPU scheduling algorithms in detail. The next chapter explains the existing CPU scheduling algorithm in Linux to depth. A theoretical analysis of the algorithm is also done . 

 THE EXISTING CPU SCHEDULER IN LINUX

            In linux, there are 3 policies of scheduling. They are

1. FIFO
(first in first out)

2. RR
(Round Robin)

3. PRIORITY ALGORITHM.

          Each process can have it’s own scheduling policy. Out of the three, the former two are mainly used for real time processes only. The third algorithm is the default algorithm followed by all processes in a typical linux installation especially in homes, educational institutions etc. This algorithm is a pretty fair algorithm, implemented relatively very simply. The relevant data structures pertaining to CPU scheduling are as follows.

5.1 DATA-STRUCTURES

5.1.1 THE PROCESS CONTROL BLOCK

       The Process Control block, the store of information about a process, is an important element in the linux kernel. This is a structured data type called as task_struct (Ref: /usr/src/linux/include/linux/sched.h). It has various fields, of which  fields  relevant to process management are explained below.

a.  Process state   

     A process may be in any one of the following state.

(i)  TASK_RUNNING   -> Process is currently running  .

(ii)  TASK_ZOMBIE     -> Process exited not removed from memory.

(iii)  TASK_INTERRUPTIBLE  -> can be interrupted by signals while waiting.

(iv)  TASK_UNINTERRUPTIBLE  -> cannot be intyerrupted by signals..

(v)  TASK_SWAPPING.   -> Task swapped into disk.

(vi)  TASK_STOPPED -> Currently suspended.

b. Counter 

This is a field, very key in the implementation of the priority algorithm. This field holds the remaining of time quantum to be executed by a process. The more the counter value, more the goodness of a process. For each timer tick, the counter value of the currently running process is decrement by one. 

c.   Priority


This is yet another field used by the priority scheduler. As the name indicates, the more the priority value, more the priority it gets. When all the running process’s counter value becomes zero, the counter value is re-initialized with their priority values. The priority value defaults to 20.The nice system call uses the priority value of a process, in order to increase the priority of a running process.

d. need_resched 

       This value, when set to 1 for a currently running process, pre-empts the currently running process during the next clock tick.

 e. next_run,prev_run 

       These are pointers to next and previous tasks in the runqueue. Note: Runqueue contains the process’ that are capable of running now.       

 f. next_task,prev_task 

       These are pointers to next and previous tasks in the task queue. Note: TaskQueue contains the process’ that are currently alive in the system. 

g. jiffies  (unsigned long variable declared in /usr/src/linux/include/linux/sched.h. This field is not a part of task_struct)

       This variable contains the value of the time since bootup in milli-seconds. Jiffies is incremented every timer tick. As the timer is set to interrupt the CPU every 10ms, the value of 1 jiffy = 10ms.

(Ref:-  /usr/src/linux/arch/i386/kernel/irq.c ..Here is where the timer is programmed to interrupt at 100 Hz.).

5.2 TIMER INTERRUPT AND PRE-EMPTIONS 

The timer interrupt, in Linux, is programmed to interrupt the CPU every 1/100th of a second. The basic unit of time measurement in Linux  is 10 ms popularly called as a jiffy. So for any practical purpose and for references we use the term jiffy or its plural jiffies to indicate 10ms or multiple of 10 ms.

           The timer interval of 10 ms is years of CPU time for any process, but that timer interval is necessary for stability of the system. Balaji Srinivasan has developed a microsecond resolution timer for linux recently in Kansas University, but it is still an experimental work. Probably a more sophisticated and robust coding of kernel is essential for microseconds timer.

 
Linux like any other multitasking Operating System, relies on the timer interrupt for pre-emption of a currently running process which has engaged the CPU for long.

5.3 THE EXISTING CPU SCHEDULER 

 
The existing CPU scheduler in Linux makes use of three different CPU scheduling algorithms. Each process can have it’s own scheduling algorithm. The different algorithms used are  

1.  SCHED_FIFO -> First in First Out.

2.  SCHED_RR    -> Round Robin.

3.  SCHED_OTHER  -> Priority algorithm. (The default one…)

Most commonly, all the processes have the PRIORITY ALGORITHM as their default.  The schedulers 1 and 2 are essentially for real time conditions. But the scheduling policy of a process can be dynamically changed. Linux provides a system call facility  inorder to change the scheduling policy of a process. (Ref: sys_sched_setscheduler function in the file /usr/src/linux/kernel/sched.c). The scheduler is called during the following occasions.

1.  Timer interrupt . ( ref:-  /usr/src/linux/arch/i386/kernel/entry.S   ret_from_intr..)

For each timer interrupt , the counter value of currently running process is decremented. Before returning to the interrupted place , the “need_resched” of current process is tested for a 1. if set , the scheduler is called which pre-empts the currently running process.The “need_resched“ field of a process is set to one during the following conditions:

a)  When “counter” value of the currently running process becomes zero. (ref: timer bottom half in /usr/src/linux/kernel/sched.c )

b)  When a process wakes up and sees that it’s counter value is greater than the counter value of the currently running process. (ref: “wake_up_process” in /usr/src/linux/kernel/sched.c )

2.  System calls:

At the end of all system calls. (ref :- /usr/src/linux/arch/i386/kernel/entry.S ret_from_syscall)

3.  Semaphore operations:

During semaphore operations and process sleeping and waking (up and down… see wake_up_process() in  /usr/src/linux/kerenel/sched.c). Semaphore wakeup , causes tasks to be waken up. As seen before , it may pre-empt the currently running process in the next clock tick.

5.4 The Priority algorithm used in Linux:

Algorithm priority ()

{

   int c=-1000,weight;

   task_struct  *p,*prev,*next;

   next = idle_task;  /* This is the swapper process that remains in the queue

                                 forever  and is never killed*/

   previous = currently running process;

   p=first  process in the run queue;

   do

    {

      if (p’s counter    >  c AND p is not requesting for pages that are not available)

       {

   
c=p->counter;


next_process = p;

                    }


     if (all processes haven’t  been considered)

     p = next  process in the  run queue..

       else

     break;

    }while (1);

      /* 
end while */ 

    if (next’s counter = 0)

     {


for_each_task(p)    


p->counter = p->counter + p->priority;

/*

for_each_task includes both running and waiting processes. This condition occurs when all currently running processes have finished their time slices. i.e. their counter value has become zero.

*/

 }

}

5.4.1 Essence of the algorithm 

The above given algorithm, although looks simple , carries on it’s back a big piece of logic ,discernible to the watchful readers. The algorithm has in built logic for preventing starvation, selective preference to I/O processes and genral fairness.

All processes in the system are given an initial time slice of 200ms (20jiffies ) to start with. The scheduler selects the process with the highest counter value i.e. maximum remaining time slice as the next process to run. As processes execute, the CPU bound processes exhaust their time slice and their counter value becomes zero whereas I/O bound processes exhaust their time slices in chunks of 20 to 30 ms. Thus I/O bound processes get preferred because of their large counter values. Moreover when I/O processes complete their 200 ms time slices, all tasks in the system get their counter values updated with their priority values plus half of the existing counter value. Thus processes that are not in the runqueue, probably waiting for an event to happen, also get their goodness increased. When they wake up, the scheduler automatically schedules them. Thus the algorithm is fair to all processes. It allows neither a CPU process nor an I/O process to capture CPU for long. So no starvation occurs. It happens that CPU bound processes execute their time slice quickly and wait for other processes, mostly I/O processes, to complete their time slices. Thus there exists a complete balance between CPU and I/O processes. 

5.5 FILES RELATED TO CPU SCHEDULING:

· /usr/src/linux/include/linux/sched.h    

· /usr/src/linux/kernel/sched.c

The file sched.h contains many important data structure and many supplementary function definitions. Many files in the kernel are dependent on sched.h. So even a small change in sched.h , will cause the recompilation of almost the whole kernel. Some of the important data structures and functions defined in this file are as follows.

1. Open file table strcuture (struct files_struct.Related to file system)

2. Struct fs_struct  (Related to file system)

3. The memory map of a process (struct mm_struct)

4. Signal handling structure.  (struct signal_struct)

5. Task structure (struc task_struct.) This structure is the kernel’s view of a process. Hence very important. This structure has been detailed in the previous section.

6. DEF_PRIORITY. (#defined value).This value is the time slice given to a process. It’s defined to be 20 jiffies ~= 210ms.

7. Wait queue functions. (exp. Adding to wait Q,removind from wait Q) 

8. PID hash functions. (To access a task’s task_struct pointer by using PID value.)


Sched.c contains the main scheduler code and many other auxiliary functions needed for scheduling. A proper explanation of the code is as follows:

Note: All explanations are for uniprocessor systems only. SMP scheduling is not documented here.

1. reschedule_idle(struct task_struct *)





                    

This function is called whenever a process is waken up. This condition occurs whenever a process is waken up from a wait queue. For example, a semaphore up can cause some waiting processes to wake up. This function compares the counter value of the waking process with the counter value of currently running process. If the counter value of the waking process exceeds the counter value of current process by 3 then this function sets the need_resched  field of the current process to 1. This pre-empts the currently running process during the next clock tick. This methodology clearly gives preference to an I/O process which wakes up after waiting for an event.

2. Add_to_runqueue (struct task_struct *p): 

This function adds a process to the begining of the runqueue. The run queue is a doubly linked list of running processes. As already mentioned, the prev_run and next_run fields help in implementing the doubly linked list.

3. del_from_runqueue(struct task_struc *)

As the name suggests, this functions deletes the process ‘p’ from it’s run     

      queue.  

4. move_last_runqueue(struct task_struct *)

This function first removes the process from the run queue and then adds it to the last of the run queue.

5. move_first_runqueue(struct task_struct *)

This function first removes the process from the run queue and then adds it 

      to the front of the run queue.

6. wake_up_process(struct task_struct *)

This function adds the process back to run queue by calling the function 

“add_to_runqueue”. Then it calls the function “reschedule_idle”. As explained above, if the waking process has starved more than current process (as indicated by the respective counter values..) then the current process is pre-empted.

7.  goodness (prev task, next task,which_CPU)


The argument this_CPU carries meaning only in SMP (symmetric multi processing) context. This function determines the goodness by the counter value of a process. The more the counter value, the more is it’s goodness. The counter value can be interpreted as the amount of remaining CPU time, a process should get in a given time quantum. Hence the reason for it being the key behind the goodness function

8.  schedule (void):


This is the heart of CPU scheduling in Linux. This function is where the next process to run is selected. Upon entering this function, the scheduler task queue is run. Task queues have been detailed in a former chapter. Then the bottom half handler is run so that any pending functions are run here. If the pre-empted process’s need_resched  field is set, then it is reset to zero. If the pre-empted process, has exhausted it’s time slice and if it’s scheduling policy is Round Robin, then the pre-empted process is added to last of the run queue. If the preemted process’s state is TASK_UNINTERRUPTIBLE or TASK_STOPPED then it is removed from the run queue. If the task is in state TASK_INTERRUPTIBLE and doesn’t have any pending signals, then it is also removed from the run queue. Then the scheduler selects the next process to run according to the priority algorithm as explained above. Then it performs the real context switch. The function switch_to(x,y) is called which switch tasks from x to y. This  function reloads page tables, LDT (local descriptor table),task register (TR) etc in order to perform the context switch.(reference: function switch_to is in file /arch/i386/kernel/process.c)

9.
Other scheduling functions are with respect to semaphore up and down, sleeping and waking up of process etc.

5.6 THEORETICAL ANALYSIS:

Advantages:

· The scheduler performs fairly under light loads. It has in built logic for preventing starvation. 

· The scheduler gives preference to I/O processes under light loads.

· The scheduler has been implemented simply and elegantly. 

Disadvantages:

· The scheduler fails to prefer I/O processes when heavily loaded especially when the proportions of CPU processes are more. It’s because the scheduler forgets history. It doesn’t consider whether the process was I/O bound or CPU bound in it’s previous time quantum. According to the scheduling logic, when all processes in the run queue exhausts their time slice, the  scheduler  updates the time slice value of all processes in the system (both running and waiting) , as the sum of the priority value  and the remaining time slice divided by 2. Thus according to this logic, the counter value of waiting processes will be more. This can speak for it’s I/O preference. But  I/O processes which are in the run queue at that time fail to get their reward.
5.7 SUMMARY 


This chapter has thrown light on the existing CPU scheduler in Linux. The Fairall algorithm designed and implemented  by us is illustrated in the next chapter.

FAIR ALL SCHEDULER :


The fairall scheduler is meant for providing a fair treatment to all processes immaterial of whether they are CPU or I/O bound. We have designed this algorithm , and fixed up the parameters uniquely inorder to ensure fairness.It gives a slight priority to I/O bound processes.

       6.1 LOGIC 
                The logic behind the fair all scheduler is based on the philosophy that any process, whether CPU bound or I/O bound will get a chance to use the CPU , depending upon two factors. One is the amount of time since its last schedule, and the second one is the amount of code it has executed in its last chance to use the CPU (in terms of time ).

[image: image1.wmf]Individual turn around time

0

5

10

15

jobs

turn around time (sec)

four

power

                

                The first parameter , time since last schedule prevents starvation of any process to a larger extent and the second factor - the amount of code execution time, will try to prioritize I/O processes to a small extent. If a process has an I/O burst in this time slice, its code execution time will be less. So that  the next time it competes for the CPU, it has a slightly higher priority than a competing CPU process because of  the  code execution time factor.

         Time since last schedule is the difference between  current absolute time and absolute time of its last schedule. The absolute time at any point of execution can be obtained from the kernel variable jiffies. This is the absolute time since bootup in terms of 10 ms.

        Starve time is defined as the difference between time since last execution and the amount of code it has executed . The process with maximum amount of starve time is always chosen as the process to be scheduled. So by virtue of the starve time calculation and  the first parameter , time since last schedule , fairness is ensured to all processes.

Whenever a sleeping process wakes up, the amount of code it has executed in this time slice is  compared to the amount of code executed by the current process . By amount of code we mean the amount of time taken to execute the code or use the CPU completely. If lesser, then need_resched field of the current process is set to one. So during the next timer interrupt schedule() is called and an appropriate process is selected.

This is  because  we make sure that the process which is going to pre-empt the running process  has some qualification to do that.  For references regarding the pre-emption in timer interrupts,  please refer the earlier chapters .

6.2 DATA STRUCTURES MODIFIED 

The following two fields to task_struct the process control block of the linux kernel are added.

1. code_execution time

2. time_since_last_schedule                
6.3 FILES MODIFIED  

             The source files sched.h and sched.c  were modified for implementing this algorithm. Sched.h defines the kernel data structure task_struct , in which the above said fields were added. The scheduler code in sched.c to was modified to implement this algorithm.


The counter values of all process is initialized to a variable called as TIME_SLICE, in the file fork.c, as soon as the process is forked and given birth.

6.4 IMPLEMENTATION DETAILS  

            The sched.c ‘s scheduler part is modified as follows.
           
    task_struct  *p,*prev,*next;

                next = idle_task;  /* This is the swapper process that remains in the 

queue forever  and is never killed*/

   previous = currently running process;

   p=first  process in the run queue;


    while(all processes haven’t  been considered)


        {

         sched_yielded=0 

/* variable to indicate whether a process has requested for a page in    memory */

  if(page is not available to  process p)


            {

                           reset scheduling policy without sched_yield
               


               sched_yielded=1


            }


           if(first time in while loop)


            {


              if(page is available for p)


               {

             starve_time =  current time -p->last_scheduled_time – 

                                     p->code_execution_time            


                    next process = p


                    first=1;


                }


                else


                    next process = p


            }  

                          else

                          {


                   if( page available AND  jiffies -  

p->last_scheduled_time  >  p->code_execution_time) AND (starve_time <= jiffies -   p->last_scheduled_time - p->code_execution_time))


                   {

              starve_time = current time  - p->last_scheduled_time – 

                                     p->code_execution_time;


                      next process = p

                               }   


                 }


           p = next process in runqueue


        }


        if( next->counter is zero) 


        next->counter = TIME_SLICE;


        next->last_scheduled_time = current absolute time 


        next->code_execution_time =0


}

To precisely explain this, this code will find the process, which has starved for a long time since it’s last schedule. The variable starve_time is indicative of the amount of time it has starved.

  
We calculate the starve time of each and every process and choose a process with a maximum of that.There may be processes which call schedule as soon as they run out of pages in physical memory and have to wait for pages from secondary devices to be swapped in.In those cases the scheduling policy is anded with SCHED_YIELD.We give such process the least priority, as it cannot be   executed immediately.We set starve time of such process to zero,indicating that it is going to be the last preferred one in case no other good process is available.

 
Jiffies refer to the absolute current time. So the starve time calculation is precisely the amount of time the process has waited without executing a code. The TIME_SLICE is the amount of time slice given to each process by default which is 20 ms. Whenever the counter value of a particular process becomes zero,  it is reloaded with  the value of TIME_SLICE, in other words we give it some more  time to run. Please refer to wake_up_process()   in sched.c for the details regarding  pre-emption by a waking up of an  I/O process .

We finally set the time of last schedule as current absolute time and code execution time as zero as the code execution for this time slice has to start altogether again.We calculate the code execution time from the lost ticks since last bottom half to timer.

The piece of code that does this work is in the function do_process_times of the sched.c file.

          current process’ code execution time = user + system

user refers to amount of ticks since last schedule in user mode and system refers to the amount of code in terms of time in the kernel mode.

6.5 THEORETICAL ANALYSIS : 

            This algorithm  tries to schedule a process which has not been scheduled for the largest amount of time and gives a slight priority to those process which didn’t run the time slice completely. The time slice for any process is 2 jiffies or 20 ms.

            But this algorithm remembers the CPU or I/O burst only for the next schedule. After that it forgets the past. So a process with continuous I/O burst will not be preferred as an I/O process completely ,while a process with continuous CPU burst will not be preferred as a CPU process completely. This is both advantageous and disadvantageous. This is  advantageous  when we want a fair treatment to all the processes . This is particularly useful, say, at some super market counters , where both the CPU processes transparent to the  user and the I/O processes in the users view must be preferred equally.

 
The disadvantage comes to picture  when the end user always wants to see some input or output done, the case of a typical house hold computer. In this case the turn around time of I/O processes and CPU processes will be almost the same,resulting in frustration for the user.

           By the logic of the algorithm, this scheduler must be fair to all process invariably and must  have a larger wait time and a slightly larger turn around time compared to the existing one in linux.

           The positive point about the scheduler is that it is very explicit and clear about the parameter it relies on. This is because of the dynamic nature of the parameter , time since last schedule ,which increases rapidly for any process which is denied the CPU. This algorithm works fairly under all conditions .The alternating sequence of CPU and I/O bursts bears no effect in the scheduler being fair.

6.6 SUMMARY

Fair all scheduler ensures a fair treatment to all the processes immaterial of their nature- CPU or I/O bound. But a great technical drawback of the design is that it forgets the past history of process in trying to be more fair.So the total wait time and total turn around time is expected to be higher than those from the existing scheduler.

This algorithm is not an alternative to existing one,but a step towards a better one. The next chapter concentrates on the HACKERNEL scheduling algorithm , the core part of our project.

HACKERNEL 

               Hackernel is an I/O prioritizing kernel ,which can also be dynamically configured to suit the particular run time environment .

7.1 LOGIC 

The basic principle of a good scheduling algorithm is to  prefer an I/O process when compared to a CPU process. This was explained in detail in the earlier chapters. The Hackernel  can segregate  an I/O process from a CPU process by the virtue of the nature of its scheduling parameters.

            The Hackernel has approximately the same logic as the fairall to prevent a general starvation of processes, i.e., it has a parameter  ‘current time - last scheduled time ‘, that grows aggresively for those processes  which have not been scheduled for a larger amount of time.

          The amount of time a process  spends outside the runqueue is an approximation of how much I/O that process has performed. So precisely the accumulated time differences between del from runqueue and add to runqueue operations is the amount of  I/O time the process has performed  so far.

           The amount of  time a process has executed its code is indicative of the amount of CPU time it has used.Hence for a constant time interval and  under normal conditons when CPU and I/O are given equal preference, a CPU bound process has a greater value of this parameter compared to I/O bound processes .        

            So a balanced arithmetic of these three parameters, namely amount of time since last schedule, I/O time, CPU time can determine dynamically to a greater extent a process’ characteristics. Thus we have a clear way of distilling I/O bound process ,from CPU bound process.

7.1.1 OUR REASONING FOR I/O PREFERENCE 

During the I/O time of a process, other processes have been scheduled in place of this process, looked from the I/O process’ point of view, this is the time it has been denied the CPU, though by itself.  So in order to decrease the turnaround time of that I/O process, this process has to be preferred.  Moreover, each I/O burst either big or small is always succeeded by a small CPU burst in order to complete the I/O processing.  Hence more preference to I/O processes.

7.1.2 CLASSICAL VIEW FOR I/O PREFERENCE :  

               According to the classical view on I/O preference, a process which has done more I/O, has more probability of relinquishing the CPU soon. Going by this theory an I/O process is given more preference. So an effective time sharing system can be implemented.

                 Summarizing the above  facts , we have precisely fixed three parameters that can determine the next process to be selected to run.

                 The factors are

1)  Time since last schedule. --- A

2)   I/O time, the time process has not been in the runqueue  --- B

3)  CPU time, the code execution time.  --- C

       The balanced arithmetic for optimized scheduling is obtained  as follows

[image: image2.wmf]INDIVIDUAL TURN AROUND TIME

0

50

100

150

200

1

JOBS

TURN AROUND 

(SEC)

kfind

sqr

div

power


       The factors B and C complement each other , ie. The factor B is the amount of I/O time and factor C is the  code execution time.These two factors taken together will be dynamic.Since increase in value of B means decrease in C and vice versa.This is true because a process performing more  I/O requires proportionally lesses CPU time, and vice versa.

           This logic can be further refined if we multiply the factor A by a factor CPU factor and divide the factor B by a factor called as I/O factor.

             So the starve time calculation becomes

[image: image3.wmf]TURN AROUND TIME

0

100

200

300

400

1

ORIGINAL

TURN AROUND 

TIME (SEC)

kfind

sqr

div

power

   

         This might seem to be fishy since we divide the I/O time by a factor. The factor B is aggregated throughout the life time of the process and hence it is usually large. So  by dividing the factor by a constant we can reduce the effect of that parameter on I/O processes. But the factor A is simply the amount of time a process has waited in the runqueue and upon scheduling it becomes zero. So we prefer to multiply it , and thus increase the priority of a starving CPU process. There is also another reason for dividing the I/O factor rather than multiplying it. The I/O time is usually very large when compared to  CPU time since the speed of the peripheral devices is very much slower compared to speed of the micro processor.

           The CPU factor we have mentioned depends on the speed of the system’s processor and memory.So it cannot be fixed statically. The I/O factor depends upon the type of I/O device and the competition to use them. That is why this algorithm is flexible for any type of environment. Thus  the CPU factor and I/O factor can be fixed in such a way that the system’s performance is improved.

           This algorithm is a result of a rigorous thought process. The implementation and analysis of several well thought  algorithms has culminated as this algorithm. The detailed analysis of this algorithm is presented in the theoretical analysis part of this chapter.

7.2 DATA STRUCTURES MODIFIED 

           We added the following fields to task structure.

1. time_not_in_runq  

2. last_scheduled_time 

3. time_of_removal 

            We added two integer variables CPU_factor and io_factor and exported them in ksyms.c. This was done so as to access them from kernel modules

7.3 FILES MODIFIED

           We modified sched.h to update the task structure. We also changed the DEF_PRIORITY , the time slice factor in sched.h. We initialized the fields time_not_in_runq  and last_scheduled_time  in fork.c . And at last we changed the scheduling function in sched.c to implement our algorithm. We also modified add_to_run_queue and del_from_runqueue functions of sched.c.                  

7.4 IMPLEMENTATION 

The scheduling logic is to select a process with the maximum starve_time. The following is the implementation of the hackernel algorithm. 


     next=initial task


     p = task next to initial task in run queue

                while(all processes haven’t  been considered)


        {


           sched_yielded=0;


           if(process p is waiting for a page)

 
            {


               p->policy = p->policy & ~SCHED_YIELD;


               sched_yielded=1;


            }


           if(entering the loop for the first time)


            {


             if(waiting for a page swap in)


              {

      starve_time= time since last schedule * CPU factor + time not in runq / iofactor 



     – code_execution time
                    

                 next process = p


                   first=1;


                }


                else


                 next=p;


            }  


            else


              {

 if( page is available for this process AND starve time < starve time of this   




process p  )


                   {

starve_time= time since last schedule * CPU factor + time not in runq / iofactor




 – code_execution time
                    

                 next process = p


                    }


              }


           p = next process in the runq


        }


        if(process next has exhausted its time slice) 


        next->counter=TIME_SLICE;


        next->last_scheduled_time=jiffies;


        next->code_execution_time=0;


}


We find out time_not_in_runq as follows. We note down the time , when a process is deleted from runqueue as time of removal. When the process is again added to the runqueue the difference between the current time and its time_of_removal is added  with  the time_not_in_runq field of that process. Thus at any given time, the time_not_in_runq of any process will contain the total amount of time a process has spent in I/O.

The current linux system stores the CPU time utilised by any process in its task structure as times.tms_utime and times.tms_stime namely the amount of time spent in user mode  and  amount of time spent system mode.

 
The CPU_factor and io_factor are the variables which determine the flexible use of the parameters for effective scheduling.

7.5 IMPLEMENTATION OF SYSTEM CALLS 

 
A system call  in linux is a switch  from the user mode to kernel mode. This is accomplished by  executing  interrupt 0x80 by the application program,  similar  to interrupt 0x21 of MS-DOS .The EAX register contains the system call number.This number is indexed in to a table  called sys_call_table defined in entry.S.

The sys_call_table in entry.S is an array of pointers to kernel functions that contain the code for the  system call.                    

            The following steps can be followed to add our own system calls in linux. Say, we have to implement a system call named plist.  The steps to be followed are:

1. Add an entry in unistd.h defining the system call number. This number should be the smallest system call number unused.

For the given example, #define NR_plist  as 192 if the highest defined system call number is 191.

2. Write the system call routine as a function with name preceded by    

      sys_  in any of the source files  those are compiled .Otherwise add  

      it to a separate file and reflect  the changes in the directory’s 

      Makefile.

3. Add an entry to sys_call_table in entry.S .

Compile the kernel and reboot with the new kernel to access the system call.

7.6 SYSTEM CALLS FOR OUR SCHEDULER 

We have implemented two system calls namely set_factors and 

get_factors . The structure of the system calls is as follows.

                   int get_factors(int *,int *);

                   int set_factors(int ,int);

 get_factor will pass on the values of CPU_factor and io_factor to the requesting application program.set_factor will set the values of CPU_factor and io_factor with the values passed as parameters.

7.7 THEORETICAL ANALYSIS

The parameters used in scheduling are dynamic as in the case of fairall scheduler. The CPU factor and io factor being one, this scheduler will be  I/O preferring.            

            In a mix of I/O and CPU process I/O processes get more preference. Hence individual turnaround process is less. So the overall wait time is reduced.

Thus by fixing a proper value of CPU and io factors, the system can dynamically adjust itself according to the process natures. It’s the responsibility of the system administrator to set the factors accordingly. 

This scheduler adds more flexibility and convenience to the user. If configured to prefer I/O bound processes, user interactive programs run better when there is a mix of CPU and I/O bound processes.

7.8 SUMMARY 

         Thus the Hackernel , gives more preference to I/O processes by default. However it’s nature can be very well changed by the system calls which change the scheduling parameters. This facility helps the supervisor to customise the system. Moreover the scheduler identifies an I/O process more dynamically and gives it more priority. Hence user interactive processes get more preference and the end user is satisfied with the performance even under heavy loads. 

This chapter dealt with the Hackernel scheduler.The following chapter elucidates the formal testing procedure we have designed.

TESTING

8.1 WAIT TIME CALCULATION 

The amount of time a process has spent in the run queue is calculated by accumulating the time it has spent during each of its sojourn in the  runqueue. We have two functions to add a process and delete a process from runqueue, namely add_to_runqueue and del_from_runqueue. We note down the instances  a process enters  to the runqueue and leaves the runqueue ,i.e., add_to_runqueue and  del_from_runqueue repectively. We find the difference between the current time and the time at which it was added to the runqueue. The difference is accumulated for all such additions and deletions.
 
The code execution time , ie. amount of time for which CPU is used, is subtracted from the accumulated factor time in the runq . This is precisely the amount of time, a process has stayed in the runqueue and was  not  given a chance to utilize the CPU. We can understand that the wait time for an I/O process is excessive while compared to wait time of a CPU process.

8.2 IMPLEMENTATION OF WAIT TIME CALCULATION

We have added two additional fields in the task structure for the purpose of wait time calculations. The first field , is the time_of_addition , the absolute time at which the process is added to runqueue, and the second one is time_not_in_runq. The time_not_in_runq is initialised to zero . Whenever a process is removed from the runqueue , the  time_not_in_runq is added to the difference between the current time and the time of addition and the new time_not_in​_runq  is found out.

             A pure CPU process, is not  removed from the runqueue. So its time_not_in_runq factor is zero always. In such cases , when that process  exits, the difference between current time and time of addition is considered as time_in_runq. The wait time is calculated as follows.

[image: image4.wmf]TURN AROUND TIMES

0

100

200

300

400

1

HACKERNEL

TURN AROUND 

TIME (SEC)

kfind

sqr

div

power


utime and stime are the amount of time a process has spent in the user mode and system mode respectively.

 A global variable total_wait_time initialised to zero at the beginning  accumulates the wait time of all the process that have run in the system. We also maintain another variable nr_process, to indicate the number of processes  that have run in the system so far. This is useful for calculating the average wait time for each process. These variables are exported and can be accessed from kernel modules.

8.3 AUTOMATED TEST ROUTINE

 
We have  automated the testing process. The input to the testing routine is a text  file  that contains the list of processes to be run  along with their arguments. The testing routine, reads the file, executes each of them concurrently, and stores the result in a log file.


The following schematic diagram shows the control flow of the testing routine.

[image: image5.wmf]COMPARISON

480

500

520

540

560

1

KERNELS

TOTAL WAIT 

TIME (SEC)

hackernel

original

 


8.3.1 CONTROL FLOW OF TEST ROUTINE :

[image: image6.wmf]COMPARISON

302

304

306

308

310

312

1

KERNELS

TOTAL TURN 

AROUND TIME 

(SEC)

hackernel

original



The testing routine parses the input file and stores the different processes and their arguments. It forks as many times as there are processes and in each of the child process, it runs a process. Before doing all these things, it loads a kernel module to memory. The kernel module loaded to memory sets a variable that will trigger the accounting process upon the exit of any process.

           The following is the list of information collected, upon the death of a process.

                1) Turn around time

                2) Wait time

                3) User time

                4) System time.

The kernel sends the above-specified information to a proc file.  The testing routine can read from the proc file and transfer them to a log or result file. The testing routine also keeps track of total turnaround time for all those processes run together. Another important factor that our testing routine does is that it maintains the wait time of the set of processes run together. These parameters give clearly an indication of the behavior of the kernel.

Say a comparison between data of two different kernels shows that turnaround time is same, but wait time is large, we can understand that the CPU processes are starved more. This is because, CPU processes stay in the runqueue for a longer amount of time than an I/O process.

 
Now lets get along to the proc file we have used for collecting the statistics.

8.4 PROC FILE SYSTEM 

 
The proc file system in Linux, is not a file system on a disk or any other secondary storage device . It is just a block of primary memory. Since the proc files provide the abstraction of files using only primary memory, so there is no performance lag. We have to create a proc file by registering the name and other details. The other details include the read ,write ,seek  and access permissions procedures for the proc file. The code is loaded to memory with the help of a kernel module.

We create test_data  , the proc file needed for the kernel to send the data from the kernel about a process , upon their exit . The test_data  proc file is a  stack of strings of utmost 80 characters. It can stack up to 4000 process in a stretch. When a read is performed in the proc file , the top most string is read , and the position of the file pointer shifts down. When a write operation is performed,a string of 80 characters is added to the memory allocated , and the file pointer is incremented. This is how a stack is implemented in the proc file.

When all the processes  exit , the testing routine reads the proc file and transfer its contents to a text file. The proc file will now be empty waiting for a fresh sequence of “writes”.  Proc files are very useful for debugging and collecting statistics, as it does not affect system’s performance.

8.5 TESTING METHODOLOGY


 Only after validation any claim has to be made. Hence it was decided to go for  an extensive testing under varied loads and conditions. Apart from informal testing methodology such as getting the feel of mouse cursor movement, time taken for an application to get loaded a formalised methodolgy was adopted. Different test cases and sample processes were identified and tested. The tests were conducted on  a CELERON 366 Mhz computer with 32 MB of memory.


The sample processes were differentiated as CPU bound , I/O bound or mixed according to their nature. Table T1 shows the test processes chosen and their individual turn around times. 

  A sample case is a mixture of various processes satisfying the requires norms. They are created by having the various sample processes run together under required proportions.


Three different load conditions were identified , common to all sorts of sample processes, light, medium and heavy. Loads were determined by two factors- number of sample processes run and total turn around time for such processes. The total turn around time was preferred a little.


Even if  only two processes were run but for a longer duration the load is heavy.Same is the case of more number of shorter processes.


Sample cases were categorised broadly into four cases, 

 
1.CPU + I/O


2.I/O + mixed


3.CPU+mixed


4.CPU+I/O+mixed.

 For first three cases three different proportions were chosen

  
1.50-50 %


2.80-20%


3.20-80%

For the fourth case, the different proportions  were   


1. 1:1:1


2. 2:1:1 


3. 1:1:2


4. 2:1:1


The sole criterion to have the processes mixed in the above proportions for different sample cases was their individula turn around times.


 Totally 45 sample cases were chosen running across the above mentioned categories. For each sample case the performance was compared . Tables  were constructed to  show  the individual turn around times of the participating test  sample processes,  turn around times  of  such processes under different kernels, total turn around time and total wait time for each kernel. Graphs were drawn from such tables.


Four interesting and reperesentative cases are presented here. The results are tabulated as Table T3 – Table T5 .The corresponding  graphs are also shown as G1-G4. Table T2 shows the details of the participating  processes for each case.

8.6 EXPERIMENTAL RESULTS AND GRAPHS

   Sample case 1

This is an example of  CPU+I/O+Mixed processes in 1:1:2 ratio. The participating processes  were Loop, Lprime, Mixprime, Sprime and Kfind. As the graph G1 shows, Hackernel was able to save five seconds. Also, a save of 34 seconds in Total Wait-time was achieved when compared to the original. This is explained by the I/O preferring nature of Hackernel.

 Sample case 2

This is an example of CPU+Mixed processes in 1:1 ratio. The participating processes were Sqr, Div, Power and Kfind. As the graph shows, Hackernel was able to save again 5 seconds. But, the Total wait time was 32 seconds more than that of the original kernel. Eventhough a lesser turn around time was achieved by Hackernel, CPU bound processes had to wait longer, till the I/O processes are over.This explains an increased Wait time and a lesser turn around time.

Sample Case 3

This is an example of CPU+ I/O processes in 1:1 ratio. The participating processes were Four and Power. Here, the Total Turn around time was the same for both the kernels. But, the total wait time for the original kernel was lesser.

Since there were one CPU process and one I/O process, the CPU process had to wait a long, in order to get I/O process completed. This explains the increased total wait time.

Sample Case 4

This is an example of  CPU+I/O process mix in the ratio 1:1. The participating processes were Sqr, Fib_prim, Three, Power, Two and Smallio.Hackernel saved 10 seconds in turn around time , while it had an increased  Total Wait time . Again this can be explained by the increased wait times of CPU bound processes.

              TABLE T1

Job
Nature
Turn around time

sqr
CPU
103

fib_prim
CPU
13

loop
CPU
156

lprime
CPU
32

div
CPU
39

power
CPU
19

mixprime
Mixed
168

sprime
Mixed
32

one
I/O
2

two
I/O
4

Three
I/O
9

Four
I/O
14

Bigio
I/O
184

Smallio
I/O
52

Kfind
I/O
160


Thus the results show that the HACKERNEL is able to identify an IO job in a job mix and is able to prioritize it. 

Kernels 


Turn around time

(sec)
Total wait time

(sec)     

Hackernel
538
1280

Original
543
1314

                                                     TABLE T2   

Jobs
Nature of jobs
Turn around time  (sec)
Original   

(sec)
Hackernel 

(sec)

mixprime
mixed
168
543
538

loop
CPU
156
536
525

kfind
I/O
160
436
340

sprime
mixed
32
189
217

lprime
CPU
32
169
217

GRAPH G1:

[image: image7.wmf]TURNA ROUND TIME

0

200

400

600

1

ORIGINAL

TURN AROUND 

TIME (SEC)

mixprime

loop

kfind

lprime

sprime


[image: image8.wmf]TURN AROUND TIME

0

200

400

600

1

HACKERNEL

TURN AROUND 

TIME (SEC)

mixprime

loop

kfind

sprime

lprime


[image: image9.wmf]COMPARISON

534

536

538

540

542

544

1

KERNELS

TOTAL TURN 

AROUND TIME 

(SEC)

HACKERNEL

ORIGINAL


[image: image10.wmf]COMPARISON

1260

1280

1300

1320

1

KERNELS

TOTAL WAIT 

TIME (SEC)

hackernel

original


[image: image11.wmf]TURN AROUND TIME

0

50

100

150

200

1

DIFFERENT JOBS

TURN AROUND 

TIME  (seconds)

mixprime

loop

kfind

sprime

lprime


TABLE T3

Jobs
Nature of jobs
Turn around time  (sec)
Original   

(sec)
Hackernel 

(sec)

kfind
I/O
160
310
 279

sqr
CPU
103
307
305

div
CPU
39
141
184

power
CPU
19
59
76

Kernels 


Turn around time

(sec)
Total wait time

(sec)     

Hackernel
305
540

Original
310
508

                                                          GRAPH G2

[image: image12.wmf]Turn around time

0

10

20

30

1

original

turn around time 

(sec)

four

power

[image: image13.wmf]turn around time

0

10

20

30

1

hackernel

Turn around time 

(sec)

four

power


[image: image14.wmf]comparison

0

10

20

30

1

kernels

total wait time 

(sec)

hackernel

original


[image: image15.wmf]comparison

0

500

1000

1

kernels

total wait ime 

(jiffies)

hackernel

original


[image: image16.wmf]individual turn around time



0

20

40

60

jobs

turn around time 

(sec)

sqr

fib_prim

three

power

two

smallio


TABLE T4

           Jobs
Nature of jobs
Turn around time  (sec)
Original   

(sec)
Hackernel 

(sec)

           four
I/O
14

21
21

           power
CPU
4
6
9

Kernels 


Turn around time

(sec)
Total wait time

(sec)     

Hackernel
21
7

Original
21
4

           GRAPH G3

[image: image17.wmf]turn around time

0

50

100

150

1

hackernel

turn around 

time(sec)

sqr

fib_prim

three

power

two

smallio

[image: image18.wmf]comparison

100

110

120

130

1

kernels

total turn around 

time (sec)

hackernel

original


[image: image19.wmf]comparison

16000

17000

18000

19000

20000

1

kernels

total wait time 

(jiffies)

hackernel

original

[image: image20.wmf]turn around time

0

50

100

150

original

turn around time (sec)

sqr

fib_prim

three

power

two

smallio

[image: image21.wmf]Individual turn around time

0

5

10

15

jobs

turn around time (sec)

four

power


                                            TABLE T5

  Jobs
Nature of jobs
Turn around time  (sec)
Original   

(sec)
Hackernel 

(sec)

  sqr
CPU
31
74
109

  fib_prim
CPU
13
53
82

  three
I/O
9
48
36

  power
CPU
4
21
24

  two
I/O
4
15
14

  smallio
I/O
52
120
98

Kernels 


Turn around time

(sec)
Total wait time

(sec)     

Hackernel
110
190

Original
120
171

GRAPH G4

[image: image22.wmf]TURN AROUND TIME

0

50

100

150

200

1

DIFFERENT JOBS

TURN AROUND 

TIME  (seconds)

mixprime

loop

kfind

sprime

lprime


[image: image23.wmf] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Proc file

 

Our 

 

kernel

 

Kernel 

module

 

Testing 

routine

 

System calls

 

Test

 

Modify 

Factors

 

Process Details

 

Access 

process details

 

Load

 

Set 

factors

 


[image: image24.wmf]TURNA ROUND TIME

0

200

400

600

1

ORIGINAL

TURN AROUND 

TIME (SEC)

mixprime

loop

kfind

lprime

sprime


[image: image25.wmf]TURN AROUND TIME

0

200

400

600

1

HACKERNEL

TURN AROUND 

TIME (SEC)

mixprime

loop

kfind

sprime

lprime


[image: image26.wmf]COMPARISON

534

536

538

540

542

544

1

KERNELS

TOTAL TURN 

AROUND TIME 

(SEC)

HACKERNEL

ORIGINAL


8.7 ANALYSIS OF TEST RESULTS 

 The results of testing routine are well in tune with the theoretical analysis.             Generally I/O processes get over quicker with Hackernel scheduler than with the existing scheduler. That could be seen from the tables and graphs obtained.

In general the wait time is higher because the CPU processes have to starve for their I/O counterparts. The turnaround times obtained show that for heavy loads of I/O and CPU processes together , Hackernel scheduler could save time in seconds.From the point of  a processor executing at Mhz speed , a second is  years of computing time. In general the turn around time for  Hackernel scheduler is either the same or better than the existing scheduler.

8.8 SUMMARY 

This section described about the testing process in great detail.The test results clearly in favour of our scheduler  especially with respect to I/O processes.The next chapter concludes the report and specifies the future enhancements that can be carried out.

              CONCLUSION  

 
Before concluding we would like to state briefly the achievements of this project and the back stage work. It will be followed by the possible future enhancements .

 
We were really successful in learning a lot of kernel hacking and operating sytems concepts. We could implement any scheduling algorithm with ease as and when required. The new scheduling algorithm we had proposed and implemented was not ready made cheese, rather it was the result of constant and tireless churning of  ideas. It was a product of a continuous thought process and incessant perseverance.


In the due course we had documented the timers and the existing scheduler in depth. No such documentation was available earlier.                

9.1 FUTURE ENHANCEMENTS : 

               The Hackernel scheduler requires to fix up the CPU and I/O factors manually. This work could be automated depending upon the nature of the processes in the system. This might require the process’ history to be stored and  manipulated intelligently.

          REFERENCES 

The Linux Kernel Module Programming Guide by Ori Pomerantz, E-Book.

Operating systems concepts  by Peterson.

The Linux Kernel Book by David Rusling , E-Book.

Web-Sites:


www.kernel.org

www.sunsite.unc.edu

www.redhat.com
Starve time =  Time since last schedule –  code execution time in last schedule





starve time = A + B - C





starve time = A * CPU factor + B / Io factor - C











         wait_time =  time_in_runq – utime – stime





� EMBED Excel.Sheet.8  ���











� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���





� EMBED Excel.Sheet.8  ���








� EMBED Excel.Sheet.8  ���








PAGE  
2

[image: image27.wmf]COMPARISON

1260

1280

1300

1320

1

KERNELS

TOTAL WAIT 

TIME (SEC)

hackernel

original

[image: image28.wmf]INDIVIDUAL TURN AROUND TIME

0

50

100

150

200

1

JOBS

TURN AROUND 

(SEC)

kfind

sqr

div

power

[image: image29.wmf]TURN AROUND TIME

0

100

200

300

400

1

ORIGINAL

TURN AROUND 

TIME (SEC)

kfind

sqr

div

power

[image: image30.wmf]TURN AROUND TIMES

0

100

200

300

400

1

HACKERNEL

TURN AROUND 

TIME (SEC)

kfind

sqr

div

power

[image: image31.wmf]COMPARISON

480

500

520

540

560

1

KERNELS

TOTAL WAIT 

TIME (SEC)

hackernel

original

[image: image32.wmf]COMPARISON

302

304

306

308

310

312

1

KERNELS

TOTAL TURN 

AROUND TIME 

(SEC)

hackernel

original

[image: image33.wmf]turn around time

0

10

20

30

1

hackernel

Turn around time 

(sec)

four

power

[image: image34.wmf]Turn around time

0

10

20

30

1

original

turn around time 

(sec)

four

power

[image: image35.wmf]comparison

0

10

20

30

1

kernels

total wait time 

(sec)

hackernel

original

[image: image36.wmf]comparison

0

500

1000

1

kernels

total wait ime 

(jiffies)

hackernel

original

[image: image37.wmf]individual turn around time



0

20

40

60

jobs

turn around time 

(sec)

sqr

fib_prim

three

power

two

smallio

[image: image38.wmf]turn around time

0

50

100

150

1

hackernel

turn around 

time(sec)

sqr

fib_prim

three

power

two

smallio

[image: image39.wmf]comparison

16000

17000

18000

19000

20000

1

kernels

total wait time 

(jiffies)

hackernel

original

[image: image40.wmf]comparison

100

110

120

130

1

kernels

total turn around 

time (sec)

hackernel

original

[image: image41.wmf]turn around time

0

50

100

150

original

turn around time (sec)

sqr

fib_prim

three

power

two

smallio

_1016905079.xls
Chart3

		310		307		141		59



kfind

sqr

div

power

ORIGINAL

TURN AROUND TIME (SEC)

TURN AROUND TIME



Sheet1

		279		310

		305		307

		184		141

		76		59

		160

		103

		39

		19

		305		540

		310		508





Sheet1

		



kfind

sqr

div

power

JOBS

TURN AROUND (SEC)

INDIVIDUAL TURN AROUND TIME



Sheet2

		



kfind

sqr

div

power

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIMES



Sheet3

		



kfind

sqr

div

power

ORIGINAL

TURN AROUND TIME (SEC)

TURN AROUND TIME



		



hackernel

original

KERNELS

TOTAL TURN AROUND TIME (SEC)

COMPARISON



		



hackernel

original

KERNELS

TOTAL WAIT TIME (SEC)

COMPARISON



		





		






_1017046802.xls
Chart10

		828		268



hackernel

original

kernels

total wait ime (jiffies)

comparison



Sheet1

		sqr		31		109		74

		fip		13		82		53

		three		9		36		48

		power		4		24		21

		two		4		14		15

		smallio		52		98		120

						110		120

						19018		17118

		four		14		21		21

		power		4		9		6

						21		21

						828		268

		loop		58		179		184

		mixprime		52		170		180

		kfind		53		125		162

		lprime		10		63		50

		sprime		10		59		52

						179		184

						34978		43524

		smallio				110		160

		sqr				133		97

		power				38		18

		three				44		39

		fib_prim				85		58

		mixprime				153		122

						153		160

						34952		37576

		smallio		52		142		231

		four		14		51		83

		three		9		44		73

		lp		10		98		58

		loop		58		222		192

		mixp		52		215		186

		sqr		31		173		140

						222		231

						61082		72455





Sheet1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

obs

turn around time (sec)

ind turn around time

0

0

0

0

0

0



Sheet2

		0		0		0		0		0		0



hackernel

turn around time(sec)

turn around time



Sheet3

		original		original		original		original		original		original



turn around time (sec)

turn around time

0

0

0

0

0

0



		0		0



hackernel

original

kernels

total turn around time (sec)

comparison



		0		0



hackernel

original

kernels

total wait time (jiffies)

comparison



		jobs		jobs



four

power

T.A.T (sec)

ind T.A.T.

0

0



		0		0



hackernel

T.A.T (sec)

T.A.T



		0		0



original

T.A.T (sec)

T.A.T



		0		0



hackernel

original

kernels

total wait time (sec)

comparison



		0		0



hackernel

original

kernels

total wait ime (jiffies)

comparison



		





		






_1017053563.xls
Chart6

		jobs		jobs



four

power

turn around time (sec)

Individual turn around time

14

4



Sheet1

		sqr		31		109		74

		fip		13		82		53

		three		9		36		48

		power		4		24		21

		two		4		14		15

		smallio		52		98		120

						110		120

						19018		17118

		four		14		21		21

		power		4		9		6

						21		21

						83		268

		loop		58		179		184

		mixprime		52		170		180

		kfind		53		125		162

		lprime		10		63		50

		sprime		10		59		52

						179		184

						34978		43524

		smallio				110		160

		sqr				133		97

		power				38		18

		three				44		39

		fib_prim				85		58

		mixprime				153		122

						153		160

						34952		37576

		smallio		52		142		231

		four		14		51		83

		three		9		44		73

		lp		10		98		58

		loop		58		222		192

		mixp		52		215		186

		sqr		31		173		140

						222		231

						61082		72455





Sheet1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

obs

turn around time (sec)

ind turn around time

0

0

0

0

0

0



Sheet2

		0		0		0		0		0		0



hackernel

turn around time(sec)

turn around time



Sheet3

		original		original		original		original		original		original



turn around time (sec)

turn around time

0

0

0

0

0

0



		0		0



hackernel

original

kernels

total turn around time (sec)

comparison



		0		0



hackernel

original

kernels

total wait time (jiffies)

comparison



		jobs		jobs



four

power

T.A.T (sec)

ind T.A.T.

0

0



		0		0



hackernel

T.A.T (sec)

T.A.T



		





		






_1017054554.xls
Chart8

		21		6



four

power

original

turn around time (sec)

Turn around time



Sheet1

		sqr		31		109		74

		fip		13		82		53

		three		9		36		48

		power		4		24		21

		two		4		14		15

		smallio		52		98		120

						110		120

						19018		17118

		four		14		21		21

		power		4		9		6

						21		21

						83		268

		loop		58		179		184

		mixprime		52		170		180

		kfind		53		125		162

		lprime		10		63		50

		sprime		10		59		52

						179		184

						34978		43524

		smallio				110		160

		sqr				133		97

		power				38		18

		three				44		39

		fib_prim				85		58

		mixprime				153		122

						153		160

						34952		37576

		smallio		52		142		231

		four		14		51		83

		three		9		44		73

		lp		10		98		58

		loop		58		222		192

		mixp		52		215		186

		sqr		31		173		140

						222		231

						61082		72455





Sheet1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

obs

turn around time (sec)

ind turn around time

0

0

0

0

0

0



Sheet2

		0		0		0		0		0		0



hackernel

turn around time(sec)

turn around time



Sheet3

		original		original		original		original		original		original



turn around time (sec)

turn around time

0

0

0

0

0

0



		0		0



hackernel

original

kernels

total turn around time (sec)

comparison



		0		0



hackernel

original

kernels

total wait time (jiffies)

comparison



		jobs		jobs



four

power

T.A.T (sec)

ind T.A.T.

0

0



		0		0



hackernel

T.A.T (sec)

T.A.T



		0		0



original

T.A.T (sec)

T.A.T



		





		






_1017054556.xls
Chart7

		21		9



four

power

hackernel

Turn around time (sec)

turn around time



Sheet1

		sqr		31		109		74

		fip		13		82		53

		three		9		36		48

		power		4		24		21

		two		4		14		15

		smallio		52		98		120

						110		120

						19018		17118

		four		14		21		21

		power		4		9		6

						21		21

						83		268

		loop		58		179		184

		mixprime		52		170		180

		kfind		53		125		162

		lprime		10		63		50

		sprime		10		59		52

						179		184

						34978		43524

		smallio				110		160

		sqr				133		97

		power				38		18

		three				44		39

		fib_prim				85		58

		mixprime				153		122

						153		160

						34952		37576

		smallio		52		142		231

		four		14		51		83

		three		9		44		73

		lp		10		98		58

		loop		58		222		192

		mixp		52		215		186

		sqr		31		173		140

						222		231

						61082		72455





Sheet1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

obs

turn around time (sec)

ind turn around time

0

0

0

0

0

0



Sheet2

		0		0		0		0		0		0



hackernel

turn around time(sec)

turn around time



Sheet3

		original		original		original		original		original		original



turn around time (sec)

turn around time

0

0

0

0

0

0



		0		0



hackernel

original

kernels

total turn around time (sec)

comparison



		0		0



hackernel

original

kernels

total wait time (jiffies)

comparison



		jobs		jobs



four

power

T.A.T (sec)

ind T.A.T.



		0		0



hackernel

T.A.T (sec)

T.A.T



		





		






_1017054108.xls
Chart3

		109		82		36		24		14		98



sqr

fib_prim

three

power

two

smallio

hackernel

turn around time(sec)

turn around time



Sheet1

		sqr		31		109		74

		fip		13		82		53

		three		9		36		48

		power		4		24		21

		two		4		14		15

		smallio		52		98		120

						110		120

						19018		17118

		four		14		21		21

		power		4		9		6

						21		21

						83		268

		loop		58		179		184

		mixprime		52		170		180

		kfind		53		125		162

		lprime		10		63		50

		sprime		10		59		52

						179		184

						34978		43524

		smallio				110		160

		sqr				133		97

		power				38		18

		three				44		39

		fib_prim				85		58

		mixprime				153		122

						153		160

						34952		37576

		smallio		52		142		231

		four		14		51		83

		three		9		44		73

		lp		10		98		58

		loop		58		222		192

		mixp		52		215		186

		sqr		31		173		140

						222		231

						61082		72455





Sheet1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

obs

turn around time (sec)

ind turn around time

0

0

0

0

0

0



Sheet2

		0		0		0		0		0		0



hackernel

turn around time(sec)

turn around time



Sheet3

		original		original		original		original		original		original



turn around time (sec)

turn around time

0

0

0

0

0

0



		0		0



hackernel

original

kernels

total turn around time (sec)

comparison



		0		0



hackernel

original

kernels

total wait time (jiffies)

comparison



		





		






_1017054055.xls
Chart2

		original		original		original		original		original		original



sqr

fib_prim

three

power

two

smallio

turn around time (sec)

turn around time

74

53

48

21

15

120



Sheet1

		sqr		31		109		74

		fip		13		82		53

		three		9		36		48

		power		4		24		21

		two		4		14		15

		smallio		52		98		120

						110		120

						19018		17118

		four		14		21		21

		power		4		9		6

						21		21

						83		268

		loop		58		179		184

		mixprime		52		170		180

		kfind		53		125		162

		lprime		10		63		50

		sprime		10		59		52

						179		184

						34978		43524

		smallio				110		160

		sqr				133		97

		power				38		18

		three				44		39

		fib_prim				85		58

		mixprime				153		122

						153		160

						34952		37576

		smallio		52		142		231

		four		14		51		83

		three		9		44		73

		lp		10		98		58

		loop		58		222		192

		mixp		52		215		186

		sqr		31		173		140

						222		231

						61082		72455





Sheet1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

obs

turn around time (sec)

ind turn around time

0

0

0

0

0

0



Sheet2

		0		0		0		0		0		0



hackernel

turn around time(sec)

turn around time



Sheet3

		original		original		original		original		original		original



turn around time (sec)

turn around time

0

0

0

0

0

0



		0		0



hackernel

original

kernels

total turn around time (sec)

comparison



		0		0



hackernel

original

kernels

total wait time (jiffies)

comparison



		





		






_1017046803.xls
Chart9

		21		21



hackernel

original

kernels

total wait time (sec)

comparison



Sheet1

		sqr		31		109		74

		fip		13		82		53

		three		9		36		48

		power		4		24		21

		two		4		14		15

		smallio		52		98		120

						110		120

						19018		17118

		four		14		21		21

		power		4		9		6

						21		21

						83		268

		loop		58		179		184

		mixprime		52		170		180

		kfind		53		125		162

		lprime		10		63		50

		sprime		10		59		52

						179		184

						34978		43524

		smallio				110		160

		sqr				133		97

		power				38		18

		three				44		39

		fib_prim				85		58

		mixprime				153		122

						153		160

						34952		37576

		smallio		52		142		231

		four		14		51		83

		three		9		44		73

		lp		10		98		58

		loop		58		222		192

		mixp		52		215		186

		sqr		31		173		140

						222		231

						61082		72455





Sheet1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

obs

turn around time (sec)

ind turn around time

0

0

0

0

0

0



Sheet2

		0		0		0		0		0		0



hackernel

turn around time(sec)

turn around time



Sheet3

		original		original		original		original		original		original



turn around time (sec)

turn around time

0

0

0

0

0

0



		0		0



hackernel

original

kernels

total turn around time (sec)

comparison



		0		0



hackernel

original

kernels

total wait time (jiffies)

comparison



		jobs		jobs



four

power

T.A.T (sec)

ind T.A.T.

0

0



		0		0



hackernel

T.A.T (sec)

T.A.T



		0		0



original

T.A.T (sec)

T.A.T



		0		0



hackernel

original

kernels

total wait time (sec)

comparison



		





		






_1016906849.xls
Chart1

		160		103		39		19



kfind

sqr

div

power

JOBS

TURN AROUND (SEC)

INDIVIDUAL TURN AROUND TIME



Sheet1

		279		310

		305		307

		184		141

		76		59

		160

		103

		39

		19

		305		540

		310		508





Sheet1

		



kfind

sqr

div

power

JOBS

TURN AROUND (SEC)

INDIVIDUAL TURN AROUND TIME



Sheet2

		



kfind

sqr

div

power

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIMES



Sheet3

		



kfind

sqr

div

power

ORIGINAL

TURN AROUND TIME (SEC)

TURN AROUND TIME



		



hackernel

original

KERNELS

TOTAL TURN AROUND TIME (SEC)

COMPARISON



		



hackernel

original

KERNELS

TOTAL WAIT TIME (SEC)

COMPARISON



		





		






_1017044716.xls
Chart1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

turn around time (sec)

individual turn around time

31

13

9

4

4

52



Sheet1

		sqr		31		109		74

		fip		13		82		53

		three		9		36		48

		power		4		24		21

		two		4		14		15

		smallio		52		98		120

						110		120

						19018		17118

		four		14		21		21

		power		4		9		6

						21		21

						83		268

		loop		58		179		184

		mixprime		52		170		180

		kfind		53		125		162

		lprime		10		63		50

		sprime		10		59		52

						179		184

						34978		43524

		smallio				110		160

		sqr				133		97

		power				38		18

		three				44		39

		fib_prim				85		58

		mixprime				153		122

						153		160

						34952		37576

		smallio		52		142		231

		four		14		51		83

		three		9		44		73

		lp		10		98		58

		loop		58		222		192

		mixp		52		215		186

		sqr		31		173		140

						222		231

						61082		72455





Sheet1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

obs

turn around time (sec)

ind turn around time

0

0

0

0

0

0



Sheet2

		0		0		0		0		0		0



hackernel

turn around time(sec)

turn around time



Sheet3

		original		original		original		original		original		original



turn around time (sec)

turn around time

0

0

0

0

0

0



		0		0



hackernel

original

kernels

total turn around time (sec)

comparison



		0		0



hackernel

original

kernels

total wait time (jiffies)

comparison



		





		






_1017046700.xls
Chart4

		110		120



hackernel

original

kernels

total turn around time (sec)

comparison



Sheet1

		sqr		31		109		74

		fip		13		82		53

		three		9		36		48

		power		4		24		21

		two		4		14		15

		smallio		52		98		120

						110		120

						19018		17118

		four		14		21		21

		power		4		9		6

						21		21

						83		268

		loop		58		179		184

		mixprime		52		170		180

		kfind		53		125		162

		lprime		10		63		50

		sprime		10		59		52

						179		184

						34978		43524

		smallio				110		160

		sqr				133		97

		power				38		18

		three				44		39

		fib_prim				85		58

		mixprime				153		122

						153		160

						34952		37576

		smallio		52		142		231

		four		14		51		83

		three		9		44		73

		lp		10		98		58

		loop		58		222		192

		mixp		52		215		186

		sqr		31		173		140

						222		231

						61082		72455





Sheet1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

obs

turn around time (sec)

ind turn around time

0

0

0

0

0

0



Sheet2

		0		0		0		0		0		0



hackernel

turn around time(sec)

turn around time



Sheet3

		original		original		original		original		original		original



turn around time (sec)

turn around time

0

0

0

0

0

0



		0		0



hackernel

original

kernels

total turn around time (sec)

comparison



		0		0



hackernel

original

kernels

total wait time (jiffies)

comparison



		





		






_1017046699.xls
Chart5

		19018		17118



hackernel

original

kernels

total wait time (jiffies)

comparison



Sheet1

		sqr		31		109		74

		fip		13		82		53

		three		9		36		48

		power		4		24		21

		two		4		14		15

		smallio		52		98		120

						110		120

						19018		17118

		four		14		21		21

		power		4		9		6

						21		21

						83		268

		loop		58		179		184

		mixprime		52		170		180

		kfind		53		125		162

		lprime		10		63		50

		sprime		10		59		52

						179		184

						34978		43524

		smallio				110		160

		sqr				133		97

		power				38		18

		three				44		39

		fib_prim				85		58

		mixprime				153		122

						153		160

						34952		37576

		smallio		52		142		231

		four		14		51		83

		three		9		44		73

		lp		10		98		58

		loop		58		222		192

		mixp		52		215		186

		sqr		31		173		140

						222		231

						61082		72455





Sheet1

		jobs		jobs		jobs		jobs		jobs		jobs



sqr

fib_prim

three

power

two

smallio

obs

turn around time (sec)

ind turn around time

0

0

0

0

0

0



Sheet2

		0		0		0		0		0		0



hackernel

turn around time(sec)

turn around time



Sheet3

		original		original		original		original		original		original



turn around time (sec)

turn around time

0

0

0

0

0

0



		0		0



hackernel

original

kernels

total turn around time (sec)

comparison



		0		0



hackernel

original

kernels

total wait time (jiffies)

comparison



		





		






_1016906959.xls
Chart5

		279		305		184		76



kfind

sqr

div

power

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIMES



Sheet1

		279		310

		305		307

		184		141

		76		59

		160

		103

		39

		19

		305		540

		310		508





Sheet1

		



kfind

sqr

div

power

JOBS

TURN AROUND (SEC)

INDIVIDUAL TURN AROUND TIME



Sheet2

		



kfind

sqr

div

power

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIMES



Sheet3

		



kfind

sqr

div

power

ORIGINAL

TURN AROUND TIME (SEC)

TURN AROUND TIME



		



hackernel

original

KERNELS

TOTAL TURN AROUND TIME (SEC)

COMPARISON



		



hackernel

original

KERNELS

TOTAL WAIT TIME (SEC)

COMPARISON



		





		






_1016905133.xls
Chart4

		305		310



hackernel

original

KERNELS

TOTAL TURN AROUND TIME (SEC)

COMPARISON



Sheet1

		279		310

		305		307

		184		141

		76		59

		160

		103

		39

		19

		305		540

		310		508





Sheet1

		



kfind

sqr

div

power

JOBS

TURN AROUND (SEC)

INDIVIDUAL TURN AROUND TIME



Sheet2

		



kfind

sqr

div

power

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIMES



Sheet3

		



kfind

sqr

div

power

ORIGINAL

TURN AROUND TIME (SEC)

TURN AROUND TIME



		



hackernel

original

KERNELS

TOTAL TURN AROUND TIME (SEC)

COMPARISON



		



hackernel

original

KERNELS

TOTAL WAIT TIME (SEC)

COMPARISON



		





		






_1016906208.xls
Chart5

		1280		1314



hackernel

original

KERNELS

TOTAL WAIT TIME (SEC)

COMPARISON



Sheet1

		168		mixprime

		156		loop

		160		kfind

		32		sprime

		32		lprime

		538

		525

		340

		217

		213

		543

		536

		436

		189

		169

		538		1280

		543		1314





Sheet1

		0		0		0		0		0



mixprime

loop

kfind

sprime

lprime

DIFFERENT JOBS

TURN AROUND TIME  (seconds)

TURN AROUND TIME



Sheet2

		0		0		0		0		0



mixprime

loop

kfind

sprime

lprime

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIME



Sheet3

		0		0		0		0		0		0



mixprime

loop

kfind

lprime

sprime

ORIGINAL

TURN AROUND TIME (SEC)

TURNA ROUND TIME



		0		0



HACKERNEL

ORIGINAL

KERNELS

TOTAL TURN AROUND TIME (SEC)

COMPARISON



		0		0



hackernel

original

KERNELS

TOTAL WAIT TIME (JIFFIES)

COMPARISON



		





		






_1016904647.xls
Chart3

		543		536		436		189		169



mixprime

loop

kfind

lprime

sprime

ORIGINAL

TURN AROUND TIME (SEC)

TURNA ROUND TIME



Sheet1

		168		mixprime

		156		loop

		160		kfind

		32		sprime

		32		lprime

		538

		525

		340

		217

		213

		543

		536

		436

		189

		169





Sheet1

		0		0		0		0		0



mixprime

loop

kfind

sprime

lprime

DIFFERENT JOBS

TURN AROUND TIME  (seconds)

TURN AROUND TIME



Sheet2

		0		0		0		0		0



mixprime

loop

kfind

sprime

lprime

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIME



Sheet3

		0		0		0		0		0		0



mixprime

loop

kfind

lprime

sprime

ORIGINAL

TURN AROUND TIME (SEC)

TURNA ROUND TIME



		





		






_1016905065.xls
Chart2

		540		508



hackernel

original

KERNELS

TOTAL WAIT TIME (SEC)

COMPARISON



Sheet1

		279		310

		305		307

		184		141

		76		59

		160

		103

		39

		19

		305		540

		310		508





Sheet1

		



kfind

sqr

div

power

JOBS

TURN AROUND (SEC)

INDIVIDUAL TURN AROUND TIME



Sheet2

		



kfind

sqr

div

power

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIMES



Sheet3

		



kfind

sqr

div

power

ORIGINAL

TURN AROUND TIME (SEC)

TURN AROUND TIME



		



hackernel

original

KERNELS

TOTAL TURN AROUND TIME (SEC)

COMPARISON



		



hackernel

original

KERNELS

TOTAL WAIT TIME (SEC)

COMPARISON



		





		






_1016902617.xls
Chart2

		538		525		340		217		213



mixprime

loop

kfind

sprime

lprime

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIME



Sheet1

		168		mixprime

		156		loop

		160		kfind

		32		sprime

		32		lprime

		538

		525

		340

		217

		213

		543

		536

		436

		189

		169





Sheet1

		



mixprime

loop

kfind

sprime

lprime

DIFFERENT JOBS

TURN AROUND TIME  (seconds)

TURN AROUND TIME



Sheet2

		



mixprime

loop

kfind

sprime

lprime

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIME



Sheet3

		



mixprime

loop

kfind

lprime

sprime

ORIGINAL

TURN AROUND TIME (SEC)

TURNA ROUND TIME



		





		






_1016902913.xls
Chart4

		538		543



HACKERNEL

ORIGINAL

KERNELS

TOTAL TURN AROUND TIME (SEC)

COMPARISON



Sheet1

		168		mixprime

		156		loop

		160		kfind

		32		sprime

		32		lprime

		538

		525

		340

		217

		213

		543

		536

		436

		189

		169

		538		1280

		543		1314





Sheet1

		



mixprime

loop

kfind

sprime

lprime

DIFFERENT JOBS

TURN AROUND TIME  (seconds)

TURN AROUND TIME



Sheet2

		



mixprime

loop

kfind

sprime

lprime

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIME



Sheet3

		



mixprime

loop

kfind

lprime

sprime

ORIGINAL

TURN AROUND TIME (SEC)

TURNA ROUND TIME



		



HACKERNEL

ORIGINAL

KERNELS

TOTAL TURN AROUND TIME (SEC)

COMPARISON



		





		






_1016902601.xls
Chart1

		168		156		160		32		32



mixprime

loop

kfind

sprime

lprime

DIFFERENT JOBS

TURN AROUND TIME  (seconds)

TURN AROUND TIME



Sheet1

		168		mixprime

		156		loop

		160		kfind

		32		sprime

		32		lprime

		538

		525

		340

		217

		213

		543

		536

		436

		189

		169





Sheet1

		



mixprime

loop

kfind

sprime

lprime

DIFFERENT JOBS

TURN AROUND TIME  (seconds)

TURN AROUND TIME



Sheet2

		



mixprime

loop

kfind

sprime

lprime

HACKERNEL

TURN AROUND TIME (SEC)

TURN AROUND TIME



Sheet3

		



mixprime

loop

kfind

lprime

sprime

ORIGINAL

TURN AROUND TIME (SEC)

TURNA ROUND TIME



		





		






