Name _____

Period _____ Date ____

UNIT III: WORKSHEET 4						
The problem	v vs t graph	Solution				
 A poorly tuned Yugo can accelerate from rest to a speed of 28 m/s in 20 s. a) What is the average acceleration of the car? b) What distance does it travel in this time? 	(+) (sym)x					
	(-)					
 At t = 0 a car has a speed of 30 m/s. After 6 s, its speed is 15 m/s. What is its average 	(+) (sim) (sim) t(s)					
acceleration during this time interval?	Σ t(s) (-)					
 A bear spies some honey and takes off from rest, accelerating at a rate of 2.0 m/s². 	(+) ★ ©					
If the honey is 10 m away, how fast will his snout be going at the moment of ecstasy?	(s/m)) (-)					
 4. A bus moving at 20 m/s (t = 0) slows at a rate of 4 m/s each second. 	(+) (₅)					
a) How long does it take the bus to stop?	(s/m)) t(s)					
b) How far does it travel while braking?	(-)					

a)	A car whose initial speed is 30 m/s slows uniformly to 10 m/s in 5 seconds. Determine the acceleration of the car. Determine the distance it travels in the 3rd second.	(+) (=) (=)	→ t(s)	
a)	A dog runs down his driveway with an initial speed of 5 m/s for 8 s, then uniformly increases his speed to 10 m/s in 5 s. What was his acceleration during the 2nd part of the motion? How long is the driveway?	(+) (mls) x(mls) x(-)	→ t(s)	
7.	A physics student skis down a slope, accelersating at a constant 2.0 m/s ² . If it takes her 15 s to reach the bottom, what is the length of the slope	(+) (=)	→ t(s)	
8.	A mountain goat starts a rock slide and the rocks crash down the slope 100 m. If the rocks reach the bottom in 5 s, what is their acceleration?	(+). (simis) (-)	→ t(s)	