
Numerical Analysis Project 

Part 1 
Question 1 
A process for implementing the Newton-Raphson method for N non-linear equations in N 
unknowns (x1, x2… xn): 
 
Our existing knowledge of Newton-Raphson method allows us to solve one equation in 
one unknown. This is accomplished by iterating  
 
 g(x) = x – Φ(x)*f(x) 
 
where  
 
 Φ(x) = 1/f’(x) 
 
This method is based conditionally on f’(x) ≠ 0.  This method requires an initial guess for 
x, and is very sensitive to this guess. 
 
To attempt to solve N equations with N unknowns simultaneously we will be using a 
method analogous to this. In our method we will re-define the function g(x) as 
 
 G(X) = X – J-1(X)*F(X) 
 
where X is a column vector of the n unknowns, and J(X) is the Jacobian matrix of the 
system.   
 
The method involves evaluating G(X) at each iteration and checking to see if G(X) –X is 
within a given tolerance.  A major drawback to this is the need to evaluate J(X) at each 
step.  The method will require an initial ‘guess’ for X in order to work.  
 
The method works under the assumption that a sufficiently accurate starting value for X 
is known, and that the inverse of the Jacobian exists.  For the latter assumption to be 
upheld J(X) must be non-singular at the fixed G(X). 
 
The general method follows below: 
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Question 2 
The algorithm is as follows: 

1. Input equations, initial guesses (= to number of equations), tolerance, 
max iterations. 

2. Create loop from 1 to Nmax. 
a. Calculate all partial derivatives, using initial guesses. 
b. Input derivatives into Jacobian matrix.   
c. Make sure inverse Jacobian is non singular. 
d. Evaluate G(X) = X – J-1(X)*F(X), where X is initial guesses. 
e. If G(X) – X is less than Tol output X. 
f. Else X = G(X), go back to a. 

3. End 
 
Code is: 
% Project#1 of part1 
% Group Alpha 
 
% since we cannot index our function we use an example for N = 3  
% Assumptions: 
% Inverse of jacobian has to exist 
% sensitive to initial guess 
% 3-point approximation for partial derivative is valid 
 
 
%temporary 
 
 
x(1) = -10; 
x(2) = 500; 
x(3) = -20000; 
x(4) = 10; 
x(5) = 28000; 
x(6) = -72000; 
x(7) = 72000; 
x(8) = 1000; 
 
w(1,:) = x; 
X = x'; 
Y = x'; 
Z = x'; 
A = x'; 
B = x'; 
h =.01; 
Nmax = 50; 
N=8; 
tol = 0.01; 
for k = 2:Nmax 
     
    %computing the jacobian 
     
    for j = 1:N 
         
        X(j,:) = X(j,:) - 2*h; 
        Y(j,:) = Y(j,:) - h; 
        Z(j,:) = Z(j,:) + h; 
        A(j,:) = A(j,:) + 2*h; 
         
         
         
        J(j,:) = (1/(12*h))*(feval('projectq3a',X) - 8*feval('projectq3a',Y) + 8*feval('projectq3a',Z) - feval('projectq3a',A)); 
         
        X(j,:) = B(j,:); 



        Y(j,:) = B(j,:); 
        Z(j,:) = B(j,:); 
        A(j,:) = B(j,:); 
    end 
     
     
    if det(J) == 0 
        fprintf('determinant is zero, will not work') 
        break 
    end 
     
    w(k,:) = w(k-1,:) + (inv(J)*(-feval('projectq3a',(w(k-1,:))))')'   ;  
     
     
    if norm((w(k,:) - w(k-1,:)),inf) < tol  
        fprintf('YES!!!!, the root is'); 
         
        break 
    end 
end     
 
check = feval('projectq3a',(w(k,:))) 
w(k,:) 
 
Where projectq3a is: 
function input = projectq3a(x); 
input(1) = 3*x1-cos(x2*x3)-0.5; 
input(2) = x1^2-81*(x2+0.1)^2+sin(x3)+1.06; 
input(3) = exp(-x1*x2)+20*x3+(10*pi-3)/3; 
 

Question 3 
Part a 
The Jacobian in question 8 sections 10.2 will simply be the coefficients in each equation.  
We know that the Jacobian will not be singular as long as no equation is the linear 
combination of another. 
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 Where P is the initial guess 

 
We created a vectorized code that will work for any number of equations.  As our results 
show, even when using a fairly large tolerance, it takes very few iterations to get 
extremely precise results.  We used a 5-point difference computation to calculate our 
Jacobian, which yields very accurate derivative results which will help our overall 
precision.  Unfortunately there is no free lunch; the five point difference is a slower 
method than less precise algorithms such as midpoint or 3-point formula.  



 
Results  
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With a tolerance of .01 it takes 61 iterations.   
Part b 

















−
=

















372304.1
2596975.

771289.8

3

2

1

x
x
x

  where   















•=

















580556.
208522.
045746.

10
)(
)(
)(

4

3

2

1

xf
xf
xf

With a tolerance of .001 it takes 7 iterations to converge to the roots. 
 

Part 2 

Question 1 
Part a 
We created a function ‘oscillator’, which was a vectorized version of the input equations 
for part a, here it is: 
 
function input = oscillator(t,y); 
input(1) = y(1)-t^2+1; 
input(2) = 0; 
 
The code for the forward Euler method in part a, is: 
*please note alpha is a vector which takes in alpha and beta 
function y_prime = forwardeuler(a,b,N,alpha) 
clc 
format long 
 
t(1) = a; 
w(1,:) = alpha; 
tol = 10^-6; 
 
%Calculate w 
 
h = (b-a)/N; 
for i = 2:N+1 
    w(i,:) = w(i-1,:) + h*feval('oscillator',t(i-1),w(i-1,:)); 
    t(i) = a + (i-1)*h; 
end 



if abs(w(i,:)-16.38905610) < tol 
    plot(t,w(1,:)) 
    N 
     
end 
 
fprintf('you are done'); 
 
Forward Euler gets only two decimal places correct with 100 000 iterations.  We tried to 
run it for 500 000, but our computer crashed. 
 
We chose our order two method to be midpoint.  The code for the midpoint method in 
part a, is: 
 
function out = Midpoint(a,b,N,alpha) 
clc 
format long 
value = 16.38905610; 
tol = 10^-6; 
% N = 500; 
 
 
True =1; 
false=0; 
OK = false; 
 
 
w(1,:) = alpha; 
t(1) = a; 
 
N = 4032; 
    h = (b-a)/N; 
    if OK==True 
        break 
    end 
    for i = 1:N 
         
        w(i+1,:) = w(i,:)+h*feval('oscillator',t(i)+h/2,w(i,:)+h/2*feval('oscillator',t(i),w(i,:))); 
        t(i+1) = t(i) + h; 
        if abs(w(i+1,:)-value) < tol 
            fprintf('the number of iterations needed :%d',i) 
            w(i+1) 
            OK = True; 
            break 
        end 
    end 
    
fprintf('\ndone'); 
plot(t,w(:,1)) 
 
 
 
 
 
 
 
 
 
 
 
 



Midpoint takes 4032 iterations (N=4032) and returns y(2) = 16.38905510023065 
Error = (abs(y(actual) – y(2))/y(actual) )*100 = 6.1E-6 % 

 
 
The famous Runge-Kutta code for part a is: 
 
function out = runge-kutta(a,b,N,alpha) 
 
% Inputing h,a,b,alpha 
clc 
format long 
value = 16.38905610; 
tol = 10^-6; 
% N = 500; 
  
 
 
w(1,:) = alpha; 
t(1) = a; 
 
 N = 45; 
    h = (b-a)/N; 
 
for i = 1:N 
    k1 = h*feval('oscillator',t(i),w(i,:)); 
    k2 = h*feval('oscillator',t(i)+h/2,w(i,:)+.5*k1); 
    k3 = h*feval('oscillator',t(i)+h/2,w(i,:)+k2/2); 
    k4 = h*feval('oscillator',t(i)+h,w(i,:)+k3); 
    w(i+1,:) = w(i,:) + 1/6*(k1+2*k2+2*k3+k4); 
    t(i+1) = t(i) + h; 
    if abs(w(i+1,:)-value) < tol 
        fprintf('the number of iterations needed :%d',i) 
                w(i+1) 
 
    end 
     
end 
fprintf('\ndone'); 
% fprintf('the value of y(b) is %2.4f\n',w(N+1,:)); 
plot(t,w(:,1)) 
 
 
 



Runge-Kutta takes 45 iterations and returns y(2) = 16.38905512797664 
Error = abs(y(actual) – y(2))/y(actual) )*100 = 6.0E-6 % 

 
As we can see the RK4 algorithm is far superior to any other.  Midpoint did a satisfactory 
job of solving the ODE.  The forward Euler is a very poor method of solving ODEs, 
taking 100,000 iterations to converge to an answer that was correct to only 2 decimal 
places. 
 
Part b) i) 
For RK4 we used the same general function as in part a, but the oscillator became: 
 
function input = oscillator(t,y); 
input(1) = y(2); 
input(2) = 4*(1-y(1)^2)*y(2)-y(1); 
RK4 with N = 1000 
 
The value of q(50) is 1.4192375258 
The value of p(50) is -0.6514740545 
The graph looks like 



 
N=10000 
The value of q(50) is 1.4301974948 
The value of p(50) is -0.6475138083 
(Graph is identical) 
 
N=20000 
the value of y(b) is 1.4301987830 
the value of y(b) is -0.6475133440 
(graph is identical) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



As we can see when we plot q vs t and p vs t get periodic functions that oscillate back 
and forth.  I would say Van Der Pol oscillator is appropriate name for this function. 

 
 
With Forward Euler N=1000, the value of q(50) is -0.1480621931 
the value of p(50) is 2.1428676639 

 
With Forward Euler N=10000, the value of q(50) is 0.3991609514 



the value of p(50) is -1.2720972733 
 
With Forward Euler N=20000, the value of q(50) is 0.6143908173 
the value of p(50) is -1.0516826113 
Part a) ii) 
With Forward Euler µ= 500 it does not converge for any reasonable values of N. 
This graph is the failed output from the forward Euler. 

 
 
With RK4 µ= 500 it does not converge for any reasonable values of N. 
This graph is the failed output from the RK4. 

 



Question 1c 
The backward Euler method is an implicit algorithm meaning it requires a non-linear 
method to be solved.  It has two major advantages, it works very well for a large range of 
h and it can be used to solve stiff functions.  We will implement our Newton Method 
from part 1, (assuming that the determinant of the Jacobian is non-zero) along with our 
backward Euler to solve this problem.  The algorithm is as follows: 

1. Input a, b, N (number of iterations) and alpha (initial values). 
2. Start loop for t with i from 1 to N. 
3. Calculate t and w (value of each point) 

a.  wi+1 =w+ hf(ti+1,wi+1) 
b. this requires a modified Newton, which means the jacobian has to exist. 

i. wi+1 = wi + inv(J)*F(wi) 
4. output w 

 
Question 1d 
Backward Euler calls, Newton, which calls test (the function Newton solves), which calls 
oscillator (which is the functions we want to solve) 
 
Backward Euler 
 function y_prime = backwardeuler(a,b,N,alpha) 
 
 
clc 
h = (b-a)/N; 
t(1) = a; 
w(1,:) = alpha; 
 
%Calculate w 
for i = 1:N 
t(i+1) = a + (i)*h; 
%     calculating w(i+1) using newton 
    w(i+1,:) = feval('modnewton',2,h,t(i+1),w(i,:),[1,1]); 
 
%     w(i+1,:) = w(i,:) + h*feval('oscillator',t(i+1),w(i+1,:)); 
     
     
end 
plot(w(:,1),w(:,2)) 
fprintf('\ndone\n'); 
fprintf('the value of y(b) is %2.10f\n',w(N+1,:)); 
 
 
Modified Newton 
 
function out = newton(N,h,t,w,x) 
 
% Group Alpha 
 
% Assumptions: 
% Inverse of jacobian has to exist 
% sensitive to initial guess 
% 3-point approximation for partial derivative is valid 
 
 
%temporary 
clc 
 
 
y(1,:) = x; 



X = x'; 
Y = x'; 
Z = x'; 
A = x'; 
B = x'; 
Nmax = 50; 
tol = 0.0001; 
for k = 2:Nmax 
     
    %computing the jacobian 
     
    for j = 1:N 
         
        X(j,:) = X(j,:) - 2*h; 
        Y(j,:) = Y(j,:) - h; 
        Z(j,:) = Z(j,:) + h; 
        A(j,:) = A(j,:) + 2*h; 
         
         
         
        J(j,:) = (1/(12*h))*(feval('test',X,w,t,h) - 8*feval('test',Y,w,t,h) + 8*feval('test',Z,w,t,h) - feval('test',A,w,t,h)); 
         
        X(j,:) = B(j,:); 
        Y(j,:) = B(j,:); 
        Z(j,:) = B(j,:); 
        A(j,:) = B(j,:); 
    end 
     
     
    if det(J) == 0 
        fprintf('determinant is zero, will not work'); 
        break 
    end 
     
    y(k,:) = y(k-1,:) + (inv(J)*(-feval('test',y(k-1,:)',w,t,h))')'   ;  
     
     
    if norm((y(k,:) - y(k-1,:)),inf) < tol  
        fprintf('YES!!!!, the root is'); 
        y(k,:) 
        break 
    end 
end     
 
out(1,:) = y(k,:) 
 

Test 
function input = test(x,w,t,h) 
input = w + h*feval('oscillator',t,x)-x'; 
 

Oscillator 
function input = oscillator(t,y); 
input(1) = y(2); 
input(2) = 500*(1-y(1)^2)*y(2)-y(1); 
 

 
 
 
 
 



Question 2 
Part a)  i) 
We ran our code on the Van Der Pol oscillator.  We were able to get the exact same graph 
when µ = 4.  We expected backward Euler to work well on the stiff function (µ = 500), 
however we only obtained useless results.  We obtained the following graph: 

 
 
Part ii) 
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Using the following oscillator function: 
 
function input = oscillator(t,y); 
input(1) = -900*y(1); 
 
and RK4 with h = .1.  We can see that for this step size RK4 blows up.   

 
 
The RK4 error plot looks exactly like the actual RK4 plot because y is essentially 0 for 
all x > .0001 

 



Part ii) 
When h is 0.001 RK4 converges. 
 
Part iv) 
Here is the code with input RK4(0,1,.001,exp(1)) 
function out = RK4(a,b,h,alpha) 
 
% Inputing h,a,b,alpha 
clc 
format long 
% format short 
w(1,:) = alpha; 
t(1) = a; 
 
N = (b-a)/h; 
 
for i = 1:N 
    k1 = h*feval('y_prime',t(i),w(i,:)); 
    k2 = h*feval('y_prime',t(i)+h/2,w(i,:)+.5*k1); 
    k3 = h*feval('y_prime',t(i)+h/2,w(i,:)+k2/2); 
    k4 = h*feval('y_prime',t(i)+h,w(i,:)+k3); 
    w(i+1,:) = w(i,:) + 1/6*(k1+2*k2+2*k3+k4); 
    t(i+1) = t(i) + h; 
end 
 
 
fprintf('\ndone\n'); 
fprintf('the value of y(b) is %2.10f\n',w(i+1,:)); 
 
 
 
for i = 1:length(t) 
     
    y(i) = exp(1-(900*(t(i)))); 
end 
 
 
plot(t,w(:,1),'b',t,y,'r') 
 
Using the backward Euler code, with h = .2, the method converges.  We evaluated the 
function and calculated the Error. 
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The error plotted against the t-values 
 
Part v) 
The backward Euler works for larger values of h compared to the RK4. Values 200 times 
bigger and achieve results 200 times less iterations. 

Part 3 
 
Zeeman Cusp Catastrophe  
 
In this problem we will attempt to solve a series of non-linear BPVs. The problem that is 
posed is variant in both space (x,y) and in time (t) with periodic boundary conditions. The 
general concept which we will apply to solve this section is to divide the space and time 
interval into Nt elements (w.r.t t) and N (w.r.t x). The problem also involves the first 
derivative of y with respect to time and the second derivative with respect to x. We will 
apply a Centered Difference to solve in space and then a Backward Euler to solve in 
time. The Backward Euler is necessary due to the fact that the problem posed is a stiff 
one. These two algorithms will have to be implemented simultaneously. 
 

Part A 

 2

2
3 )(1

x
ybayy

t
y

∂
∂

+++−=
∂
∂ σ

ε
  

 2

2

07.0
x
avb

t
a

∂
∂

++=
∂
∂ σ  

 2

2
2 035.04.0)1(

x
bvyaba

t
b

∂
∂

++−−−=
∂
∂ σ  

 
 

Now with Centered difference of 2
11

2

2 )2(
h

yyy
x
y iiii +− +−

=
∂
∂

 where 

 2

2
2 )(

N
ab −

=h  , 1)( =− ab  
2ND σ= , ε = 0.0001 

 
  )2()(10 11

34
+− +−+++−=′ iiiiiiii yyyDbyayy

 
and correspondingly 
 
 )2(07.0 11 +− +−++=′ iiiiii aaaDvba  
   )2(035.04.0)1( 11

2
+− +−++−−−=′ iiiiiiiii bbbDvyabab

 
 



Part B 
 We will be solving 9 ODEs. There are 11 but the first two are the same as the last two. 
 
 
Algorithm. 

 Step 1 : divide x into 11 steps where 
N

lx )0( −
=∆  , where  xixi ∆=

 
   Apply this to the periodic boundary conditions 
 

  Pick a step size for t    t∆ , where t tjj ∆=   

Step 2 :            For each  use a Centered difference to solveix 2

2

x
y

∂
∂  for a specific  

  t  j

 
Step 3 :  Now use this information to solve the PDE in terms of (y,a,b) 

using a Backward Euler combined with a Modified Newton at i and 
j (Backward Euler and modified Newton described in part 2, 
question 3c) 

 
Step 4 :  Do this for all of i and j 
 
 

  

Part C 
The RK4 method exploded due to the fact that the problem is stiff. A stiff problem 
requires an implicit method to properly solve it, which the RK4 is not.  
The code for RK4 in this question is: 
 
ia = 0; 
ib = 1.1; 
Nt = 1000; 
N=10; 
for i = 1:N 
    y(i,1) = 0; 
    a(i,1) = -2*cos(2*pi*i/N); 
    b(i,1) = 2*sin(2*pi*i/N); 
    
end 
 
 
h = (ib-ia)/Nt; 
t = ia:h:ib; 
 
for j = 1:Nt 
    time = t(j); 
    for i = 1:N 
         
        if i == 1 
            n = N; 
            m = i+1; 



        elseif i==N 
            n = i-1; 
            m = 1; 
        else 
            n = i-1; 
            m = i+1; 
        end 
        ddydx = (y(n,j) -2*y(i,j) + y(m,j)); 
        ddadx = (a(n,j) -2*a(i,j) + a(m,j)); 
        ddbdx = (b(n,j) -2*b(i,j) + b(m,j)); 
         
        w(i,:) = feval('RK4',time,h,[ y(i,j) a(i,j) b(i,j) ], [ddydx ddadx ddbdx]); 
        y(i,j+1) = w(i,1); 
        a(i,j+1) = w(i,2); 
        b(i,j+1) = w(i,3); 
    end 
end 
plot(t,y(1,:)) 
 
 

Part D 
Our backward Euler did not perform well on this function.  Once again we obtained 
surprising results considering backward Euler is designed to work on stiff functions.  Our 
backward Euler code worked extremely well on non stiff functions, (up to 200 hundred 
times faster then RK4).  However, it yielded unexpected results for stiff functions and 
therefore was useless to us on this question. 
 
*Please note we could not output graphs for the next questions due to lack of values 
obtained from this function. 
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