
Before one can begin to understand quantum mechanics, it is beneficial to study 
the results from statistical mechanics. While quantum mechanics deals with the behaviour 
of isolated particles, statistical mechanics summarizes the behaviour of a collection of 
many particles (in the order of 1023 !). Basically, statistical mechanics is a form of “book-
keeping”. It considers all possible states that a system of particles can be in, then makes 
quantitative measurements of the tendency of the particles to be in one particular state 
rather than the other. 

 
Quantum mechanics is simply a special case of statistical mechanics; actually, it 

is the limiting case: the absolute minimum extreme for which the results of statistical 
mechanics can be applied. Instead of results describing the possible state configurations 
of a system of particles, quantum mechanics describes all possible state configurations 
of individual particles, or smaller groups of particles.  

 
So, can the successful theory of statistical mechanics (from which we get an 

understanding of semi-conductors, Bose-Einstein condensation and more), be married to 
the fundamental theory of quantum mechanics (from which we gain knowledge of atomic 
structure and tunnelling effects)? The short answer is: they’d better! For two theories to 
be considered successful in terms of physical accuracy there must be continuity between 
them; the one must give way to the other (and vice-versa) in a complimentary way. For 
instance, the theory of Special Relativity and Newtonian/Lagrangian mechanics are 
complimentary in the case of “slow” motion (i.e. at speeds much less than 2.99x108 m/s). 
So too, must the two theories of quantum and statistical mechanics be complimentary. 

 
Let’s delve into the world of statistical mechanics for just a moment. Imagine a 

large system of particles. Now, imagine describing the behaviour of every single particle 
at every single place and time. Unless you have a lot of free time (and energy), I doubt 
you’d be up to the challenge. However, you can take a step back and observe the overall 
system as a whole. We should all be familiar with the distribution pattern for a purely 
random system. Randomness means simply the absence of any predetermined behaviour 
or outcomes. As far as the particles are concerned, they have no consciousness, and so 
they simply exist and move about randomly. For any random system, the distribution of 
outcomes will follow the Gaussian curve which looks like: 

 

 
 
 

 



The function which generates this curve is given by  

 
Thus, we can safely conclude that there will be a similar exponential function describing 
a system of many particles in statistical mechanics. An attractive way of defining a 
system is in terms of its energy. If there is an overall energyτ of a particular 
configuration, then the distribution of particles with energyε  can be expressed 
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termed the “Boltzmann factor”. This factor gives us the relative frequency of finding a 
single particle with energyε  in a system of particles with thermal kinetic energyτ . It 
shows us that a system prefers to be in a lowest energy state, with the likelihood of 
finding highly energetic particles being extremely low (but not impossible!). This hints at 
the reason why “absolute zero”, the phenomenon in which all thermal motion ceases, is 
unattainable: It is impossible to have all (fermion) particles of a system occupying the 
same low-energy state. There is always a distribution of particles in different states. 

 
Of course, it is rather restricting to consider only one particle with energyε . It 

would be much better to have a way of considering all particles of a system, each with 
their own energies. This is where the Partition Function makes its debut. The partition 
function is a summation of all the Boltzmann Factors, and this stores all the 
“information” about all the different possible states of a system of N particles. Its 

expressed as
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= ∑ . Here, iε indicates the energy of an individual particle. Finally, 

the probability of finding a particle in an energy state iε  in a system of thermal energy 
τ is 
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Essentially, we are done with statistical considerations. All other applications arise from 
manipulations of the Boltzman Factors and the Partition Function. We are now ready to 
take these results and relate them to quantum mechanics. 

 
While statistical mechanics can be thought of as the mechanics of the very many, 

quantum mechanics can be seen as the mechanics of the very few. 


