Site hosted by Angelfire.com: Build your free website today!

Website Home Medical Home

Pulmonary

Up

 

RESPIRATORY MECHANICS

 

PA = alveolar pressure

PIP = intrapleural pressure

PB = atmospheric pressure

 

Transmural Pressures:                

 

PTP = PA - PIP                        PTC = PIP – PB                         PTT = PA - PB

 

Compliance:               

 C =  DV                   Clung =      DV                           1  =   +    1

                                       

 DPTransmural                              DPTP                       CT    CL         CCW

 

 

Hysteresis

-          Expiration and inspiration curves are different

-          Takes less PTP to maintain a particular volume during expiration

-          Mainly due to surface tension forces at the air-liquid interface of alveolus

-          Small contribution due to elastic properties of lung tissue

 

Minimum volume = lung is removed from intrapleural space and allowed to collapse

 

Degassed lung

-          Lung has minimum volume removed

-          Alveoli are completely collapsed

-          ­­ PTP to get first inflation

-          Beginning with next inflation back to normal

 

Saline filled lung

-          ¯ pressure

-          ­ lung compliance (­ volume and ¯ PTP)

-          ¯ Hysteresis b/c air-liquid interface ruined

 

Surface Tension Forces

 

Law of Laplace                     P  =  2 T

                                                            r

 

Dilemma

-          bubbles with equal surface tensions

-          different radii

-          bubbles with ¯ radii will have ­ pressure

-          \ smaller bubbles will empty into larger bubbles

                                               

Solution

-          surfactant adjusts the tension with changes in surface area

-          ­ tension with ­area / ¯ Tension with ¯ area

-          \ PA is equal in all alveoli at the end of expiration

-          detergent decreases surface tension but is independent of the surface area

 

Lung with surfactant removed

-          resembles degassed lung

-          ­­ PTP needed each time the lung is inflated

-          ¯ hysteresis

-          lung contains less air at a particular pressure

-          resembles Respiratory Distress Syndrome


 

Functional Residual Capacity (FRC)

-          volume in lung at end of normal expiration

-          elastic forces of chest wall and lungs are exactly balanced

 

Interaction between Lung and Chest

-          Chest wants to expand

-          Lungs want to collapse

-          \ PIP is negative (subatmospheric)

-          \ In Pneumothorax (puncture) the lungs are collapsed to MV and chest is expanded (PIP = 0 = PB)

 

Lung Pressures in Normal Lung-Chest System

At FRC,

PIP = -5 cm H2O                    PTP = PA – PIP       0 – (-5) = 5 cm H2O

PA = 0                                     PTC = PIP – PB         (-5) – 0 = -5

PB = 0                                     PTT = PA - PB               0 – 0 = 0

 

Fig. 7.11

Above FRC

-          contribution of PTC towards PTT decreases until zero at the equilibrium point of the chest wall

-          up until the chest wall reaches its equilibrium it is helping to expand lung

-          after reaching the equilibrium point of the chest wall the respiratory muscles must do additional work to expand chest and lung

-          positive airway pressures

 

At FRC- airway pressure = 0 (atmospheric)

 

Below FRC

-          negative airway pressures

-          chest resists expiration

 

Poiseuille’s Law

 

Flow =    DP r4 p                                  inspiration: DP = PB - PA                    Flow = DP         

                h l 8                                       expiration:  DP = PA – PB                                     R                 R=resistance

 

Re > 2000 = turbulent airflow ® ­DP ® ­ resistance to breathing

 

Dynamics of Breathing

1. diaphragm and intercostal muscles contract                5. respiratory muscles relax

2. ­ volume of alveoli                                                    6. ¯ volume

3. ¯ PA (PA < PB)                                                                    7. ­ PA (PA > PB)

4. air flows into lungs                                                      8. air flows out of lungs

 

Flow – Volume curves

-          airflow rises rapidly then declines during most of the expiration

-          it is virtually impossible to go outside of the curve

-          this is due to the compression of the airways by ­ intrathoracic pressure (EPP)

-          there is no flow at the EPP \ transmural pressure = 0

-          driving force of the upstream segment from the alveolus depends on lung volume and elastic recoil

not on the force of expiratory muscle contraction

 

Base of Lung                                        Apex of Lung

­ compliance                                        PIP is the most negative      

­ ventilation                                         PTP is the most positive

­ perfusion


 

SPIROMETRY

 

Measures

-          lung volumes

-          flow rates

Results given as

-          flow-volume loops

-          volume-time curves

 

Max inspiratory volume (TLC) is decreased by

-          ¯ inspiratory muscle strength

-          ­ in elastic recoil of lung or chest wall

 

Max expiratory volume is decreased by

-          ­ residual volume

-          ¯ expiratory muscle strength

-          ­ airway resistance

-          airways that close at higher volumes

 

Obstructive Lung Disease

 

Asthma                                                                                  COPD (emphysema)

Chronic brochial inflammation                                         Chronic brochial inflammation

Episodic bronchospasm                                                      loss of alveolar-

                                                                                    capillary wall

¯ x-sec area of bronchi, ­ resistance, ¯flow                  ¯ x-sec area of bronchi, ­ resistance, ¯flow

               

Normal inspiratory capacity                                

Reduced expiratory flow                                       Reduced expiratory flow

¯ flow rate (slope)                                                    ¯ flow rate (slope)

 

­ TLC                                                                        ­ TLC

¯ Lung markings, reduced elastic recoil                     ¯ Lung markings, reduced elastic recoil

normal FVC                                                                   normal FVC

reduced FEV (and FEV/FVC)                                           reduced FEV (and FEV/FVC)

 

¯ PO2 (low V/Q)                                                            ¯ PO2 (low V/Q)

¯ PCO2 (increased V in response to hypoxemia)                variable PCO2

 

RESTRICTIVE PULMONARY DISEASE

 

Pulmonary Fibrosis                                                 Respiratory Muscle Weakness

Inflammation and fibrosis                                                   Normal lung

Reduced compliance                                                            Reduced muscle strength

 

Reduced inspiratory capacity                                 Reduced inspiratory capacity

normal expiratory flow                                                     normal expiratory flow                                    

­ flow rate (slope)                                                    abnormal ventilation perfusion relationships

 

¯ TLC                                                                                   ¯ TLC

­ lung markings, ­ elastic recoil                                        abdominal paradox

¯ FVC                                                                                   ¯ FVC

¯FEV (ratio okay)                                                      ¯FEV (ratio okay)

 

¯ PO2 (low V/Q)                                                                     ¯ PO2 (low V/Q)                                                                              

¯ PCO2 (increased V in response to hypoxemia)                variable PCO2

DIFFUSION

 

Mixed Venous Blood

PO2 = 40 mmHg

PCO2 = 45 mmHg

 

PO2

-          of air = .21(PB  – 47) » 150 mmHg

-          in alveolus (PAO2) » 100 mmHg

 

PCO2 in alveolus = 40 mmHg

 

Fick’s Law of Diffusion

 

Flow = (d) A  (P1 –P2)                         diffusion capacity =  (d) A                 =      flowO2

                   T                                                                                   T                                 PAO2 – PpcO2

 

d = diffusion constant

A = area available for diffusion

T = thickness of diffusion barrier

PC = pulmonary capillary

 

DCO2 = 1.25 DCCO                 DCco = flowco

                                                                                PACO

 

Pulmonary capillary blood

-          equilibrates from 40 to 100mmHg in .25 sec

-          has until .75 sec so there is some slack

 

Factors determining PACO2

 

Vdot = FACO2 x VA

 

PACO2 = (863) VCO2                        ­ PACO2 means ¯ in ventilation

                            VA

 

Hyperventilation = ¯ PCO2

Hypoventilation = ­ PCO2

 

Alveolar Gas Equation

 

PAO2 = .21 (PB – 47) – PACO2

                                             .82

 

 

BLOOD FLOW

 

Pulmonary Circulation                    vs.                           Systemic Circulation

Very low Pressures                                               Pressures 10x higher

Mean pulmonary = 15                                     Mean systemic = 100

Right Ventricle (begins) = 25                         Left ventricle  = 120

                Left atrium (ends) = 5                                  Right atrium = 2

 

Thin vessel walls                                                 Thick vessel walls

Little smooth muscle                                    Abundant smooth muscle

 

Extra – alveolar vessels

¯ pressure

Radial traction pulls these vessels open

 

Alveolar vessels

Exposed to alveolar pressure

Increasing PA squishes these vessels

 

Pulmonary vascular resistance

Flow = DP                                              \ Resistance =                 DP         

                R                                                                             V(CO)

 

DPpul = 15 – 5 = 10

DPsys = 100 – 2 = 98

V (CO) is the same for both, \ pulmonary vascular resistance must be 1/10 that of systemic

 

Pulmonary vascular resistance = 15 – 5 = 1.7mmHg/L/min                CO = 6 L/min

                                                                6                                              mean pulmonary arterial pressure = 15

                                                                                                                left atrium pressure = 5

 

Pulmonary vascular resistance ¯ as pulmonary arterial or venous pressures ­

1.        Recruitment – chief mechanism from low to high pressures

2.        Distension – chief mechanism at relatively high pressures

 

­ Lung volumes

                ¯ resistance on pulmonary arteries (extra – alveolar)

                ­ resistance on pulmonary capillaries (alveolar)


 

 

Measurement of Pulmonary Blood Flow

 

Blood flow through lung = VO2 (consumption)

                                                     [O2]a  - [O2]mV

 

Zone 1

Does not occur under normal conditions

PA > Pa > Pv

No blood flow is possible b/c capillaries are squashed flat

Considered as alveolar dead space (ventilated but not perfused)

 

Zone 2

Pa > PA > Pv

Blood flow is determined by the difference between arterial and alveolar pressures (instead of venous)

 

Zone 3

Pa > Pv > PA

Blood flow is determined y the difference between arterial and venous pressures

 

Hypoxic pulmonary vasoconstriction

“The lung is a noble organ”

contraction of smooth muscle in hypoxic region

depends on PO2 of alveolar gas (not pulmonary arterial blood)

 

Where does the fluid go when it leaves the capillaries?

First:

Interstitium of alveolar wall ® interstitial space ® perivascular and peribronchial spaces ® lymph

Later:

Alveolar spaces ® alveoli

 

Functions

 

1.       Gas exchange

2.        Reservoir for blood

3.        Filter blood

4.        Trap white blood cells

5.        Synthesis of phospholipids (PC for surfactant)

6.        Syntheses of proteins (collagen and elastin)

7.        Carbohydrate metabolism (mucus)

8.        Vasoactive substances metabolized (receives whole circulation so well suited to modify blood-borne substances)

-activation:                 AI ® AII with ACE

-deactivation:                 bradykinin with ACE

                                serotonin from uptake and storage

                                prostaglandins

                                NE

9.        Arachidonic acid metabolites (leukotrienes, prostaglandins, and thromboxane A2)


 

VENTILATION – PERFUSION RELATIONSHIPS

 

Hypoxemia = low PO2

 

                1. Hypoventilation

                                ­ alveolar and arterial PCO2

                                PACO2 = (863)   CO2 production               

                                (if ventilation is halved, then PCO2 is doubled)

                                                                      VA          

 

                                Alveolar gas equation

                                                PAO2  =  PIO2  - PaCO2              

                          PIO2 = .21( PB – 47)

                                                                                    R                                             R = .82

                2. Imcomplete Diffusion

                                Part of the reason why PO2 of arterial blood is not the same

                                as that in alveolar gas

               

                3. Shunt

                                Blood which enters the arterial system without going

                                through ventilated areas of lung

                                Contributes to why PO2 of arterial blood is not the same as

                                that in alveolar gas

                                Bronchial artery blood, coronary venous blood (Thesbian

                                veins)

                                Giving O2 to patient will not make a difference

               

                4. Ventilation – Perfusion Ratio

                                Most common cause of Hypoxemia

                               

Inspired air PO2 = 150 mmHg

                                Inspired air PCO2 = 0

 

Normal alveolar PO2 = 100 mmHg

                                Normal alveolar PCO2 = 40 mmHg

 

                                Mixed venous blood PO2 = 40 mmHg

                                Mixed venous blood PCO2 = 45 mmHg

                               

                                VA/Q ratio is lower in base than apex

                                                Ventilation and perfusion are both increased in

                                                    base

                                                However perfusion is increased more ¯ the ratio

 

CO2 retention b/c

-          chemoreceptors

-          ­ ventilation

 

A-a gradient

 

PaO2 - PAO2

 


 

TRANSPORT

 

O2 transport

 

Carried in two forms

1.        Dissolved in plasma

[O2]dissolved = .03 PO2

 

2.        Hemoglobin

14.7g of Hb in 100ml blood

each gram of Hb has capacity to carry 1.39 ml of O2

 

O2 content = dissolved O2 + Hb-O2

                    =  .03 PO2 + (1.39 x Hb x Sat.)

 

O2 capacity = 1.34 x [Hb]

 

                % Hb-O2 saturation = O2 combined with Hb               x 100

                                       O2 capacity

 

Significance of shape of oxygen dissociation curve

At high PO2 values changes can occur in PO2 without altering % Hb saturation (flat portion of curve)

 

Shift to the right

Decreased affinity for O2

Increased temperature

Decreased pH (­ H+)

Increased BPG

Increased CO2

 

Carbon monoxide

Binds Hb 210x more strongly than oxygen

¯ O2 carrying capacity

­ O2 affinity

 

Carbon dioxide Transport

1.        Dissolved

[CO2]dissolved =  .7 PCO2                (20x more dissolvable than oxygen)

 

2.        Carbamino – CO2

 

3.       Bicarbonate

Majority is carried as bicarbonate

Chloride shift

Haldane effect: blood increases its ability to carry CO2 when it is deoxygenated

 

                CO2 dissociation curve is steeper and more linear

 

                See schematic of Gas exchange in tissues (RBC)