Site hosted by Angelfire.com: Build your free website today!

Website Home Medical Home

Neuroscience 1

Up

 

GENERAL

Fasciculus = bundle of axons in the CNS

Funiculus = cord areas (stains black)

Lemniscus = ribbon shaped fiber tract  (stains black)

Ipsilateral = same side

Contralateral = opposite side

Bilateral = both sides

Decussate = crossover

 

Afferent = sensory

Efferent = motor

 

Prosencephalon (forebrain)

            Telencephalon

            Diencephalon

 

Mesencphalon (midbrain)

 

Rhombencephalon (hindbrain)

            Medulla

            Pons

            Cerebellum

 

Aphasia = speech deficits

Paraplegics do have reflexes due to intrinsic wiring in spinal cord “reflex arch”

 

Spinal Cord

DORSAL (mainly sensory)

Dorsal columns = discriminating touch and proprioception (don’t cross in spinal cord)

Spinothalamic = pain and temperature (decussates at anterior white commissure)

 

VENTRAL (mainly motor)

Corticospinal tract = efferent, voluntary skilled motor

 

-          anterior median fissure (anterior spinal artery)

-          posterior median fissure

-          posterior intermediate fissure

-          posterior lateral fissure

 

Coverings

-          dura mater

-          arachnoid mater

-          pia mater

 

Denticulate ligaments = made of pia: connects spinal cord to arachnoid and dura mater

Conus medularis = end of spinal cord L1- L2

Filum Terminale = made of pia: connects spinal cord to dura mater at end of canal

 

 

SACRAL LEVEL:

Small with cauda equina

¯ white matter; ­gray matter

 

LUMBAR LEVEL:

Ventral horn = hearts, anterior horn cells = alpha motor neurons

 

THORACIC LEVEL

­ white matter; ¯gray matter

Why? Haven’t given off as much motor and have taken up more sensory

Intermedial lateral gray (origin of sympathetic fibers)

Nucleus dorsalis of Clark

Dorsal columns (discriminating touch and proprioception):

            Fasciculus gracilis (medial): info from below mid thoracic level

Fasciculus cuneatus (lateral): info from the mid thoracic level and up

 

CERVICAL LEVEL

­ ventral gray matter (for brachial plexus)

 

Brain Stem

 

CRANIAL NERVES

Midbrain

            CN 3 oculomotor -midline

            CN 4 trochlear – from the dorsal side of brainstem

Pons

            CN 5 trigeminal –exits from the substance of pons

Pontomedullary junction

            CN 6 abducens

            CN 7 facial

            CN 8 vestibulocochlear

Medulla

            CN 9 glossopharyngeal

            CN 10 vagus

            CN 11 accessory –coming up from spinal cord

            CN 12 hypoglossal –between medullary pyramid and olive    

 

MEDULLA

CLOSED

Corticospinal tract decussates at medullary spinal jct; travel in pyramids

                        Damage rostral to decussation = contralateral motor damage

                        Damage caudal to decussation = ipsilateral motor damage

Nucleus gracilis and cuneatus – seen grossly as gracilis and cuneatus tubercles Medial lemniscus

                        Fibers from the dorsal columns: (already crossed in reticular formation)

            Obex – most caudal point of 4th ventricle

OPEN

            Tegmentum of 4th ventricle at level of medulla:

                        Medial bump is hypoglossal trigone (hypoglossal nucleus)

                        Lateral bump is vagal trigone (dorsal motor nucleus of vagus)

            Inferior cerebellar peduncle appears

PONS

Inferior cerebellar peduncke – sensory info spinal cord ® cerebellum

Middle cerebellar peduncle – pons ® cerebellum

Superior cerebellar peduncle – carries output of cerebellum

Basilar artery on ventral side of pons

 

MIDBRAIN

Cerebral peduncle

Cerebral aqueduct

Roof: inferior and superior colliculi

Superior cerebellar peduncle fibers cross (decussation of brachium conjuctivum)

Substantia Nigra = produces dopamine, degenerates in Parkinson’s disease

 

Tectum = roof

Tegmentum = floor

 

Cerebellum

 

Cerebellar nuclei (seen in x-sec of caudal pons)

-          4 pairs composed of giant efferent neurons

-          only neurons of cbl that have axons that leave the cerebellum

-          medial ® lateral

                        fastigial

                        globose

                        emboliform

                        dentate

 

cerebellar lobes (lobes ® lobules ® folia)

-          anterior lobe –degeneration in chronic alcoholism and in hereditary ataxias

primary fissure – best seen from sagittal view

-          posterior lobe

-          flocculonodular lobe

anterior of cerebellum

midline: nodulus (part of vermis)

wings: flocculous

 

vermis – longitudinal strip in midline

hemispheres –right and left each having lateral and intermediate portions

            tonsils – can herniate through foramen magnum

 

inferior cerebellar peduncle (restiform body)

            sensory info spinal cord ® cerebellum

            juxtarestiform body – communicating axons between vestibular structures and cbl

 

middle cerebellar peduncle

            pons ® cerebellum

 

superior cerebellar peduncle

            carries OUTPUT of cerebellum ® brainstem

            these axons arise from cerebellar nuclei


 

CEREBELLAR HISTOLOGY

 

Cerebellar cortex (3 layers) gray matter: homogeneous structure

1.       molecular layer (outermost) - ¯ cells, mostly axons and dendrites

Basket cells – interneuron, inhibitory

Stellate cells – interneuron, inhibitory

 

2.       purkinje layer (middle) – monolayer of large cell bodies

only cell bodies to have axons that leave the cbl cortex to end in cbl nuclei

 

            3.    Granule layer (innermost) –

                    ­ density of neurons (most dense in entire brain)   

                        Granule cells

Granule cells head toward molecular layer. 

                                    There they bifurcate to become parallel fibers

                                    These parallel fibers have direct input into purkinje cell

                                    dendrites

                        Golgi cells

                                    Interneurons

 

White matter (2 fiber types)

1.       Climbing fibers

Arise: ONLY in olivary complex

Run: ONLY in inferior cerebellar peduncle

Terminate: Purkinje cell dendrites in molecular layer

Memorize the letter “i” for climbing, olive, inferior cbl peduncle

*Direct synapse onto Purkinje (which then sends its axon out cbl cortex)

 

2.       Mossy fibers

Axons of all other inputs

Arise: spinal cord, medulla (except olive), pons

Run: inferior and middle cerebellar peduncles

                        Terminate: granule cell layer on glomerulus

                        Mossy® glomerulus ® granule cell ® molecular layer ® purkinje ®

                        cbl nuclei

                        *Indirect input to Purkinje cells via granule cells

 

cerebellar function

 

Planning movements

Coordination

Execution of movement

Postural maintenance

Motor learning and adjustments

 

 

DIENCEPHALON

 

PARTS

 

1.       Thalamus

2.       Hypothalamus

3.       Epithalamus

4.       Subthalamus

 

LIMITS

Anterior limit (separates 3rd ventricle from subarachnoid space)

Lamina terminalis – runs between optic chiasm and anterior commissure

 

Posterior limit (separates diencephalon from mesencephalon)

Dividing line between the mammillary bodies and posterior commissure

 

Internal division

Hypothalamic sulcus (depression in wall of 3rd ventricle; separates thalamus from hypothalamus)

 

THALAMUS

 

·         relay between cerebrum and brainstem

·         we are responsible for 5 nuclei

1.       Lateral geniculate body

-         located: posterior-inferior side near junction of the midbrain and diencephalon

-         associated with optic tract

-         sensory relay nucleus for visual system

2.       Medial geniculate body

-         located: medial to lateral geniculate body

-         relay nucleus for auditory system

3.       Centromedian nucleus

-         located: posterior middle part of thalamus always just medial to VPM

-         lies within the internal medullary lamina

4.       Anterior nucleus

-         walled off by internal medullary lamina

-         destination of mamillothalamic tract

-         degenerates in Alzheimer’s disease and senile dementia

5.       External reticular nucleus

-         Thin layer that lies between the external medullary lamina and internal capsule

·         Internal capsule

lateral to thalamus (if you can see thalamus must be posterior limb of internal capsule)

connects cerebrum to brainstem

corticospinal fibers found here

·         Interthalamic adhesion or massa intermedia


 

HYPOTHALAMUS

 

·         3 parts

1.       Optic (anterior) part (over optic chiasm)

2.       Infundibular (middle) part

3.       Mamillary (inferior) part

·         Divided into medial and lateral portions by the fornix

·         Hypothalamus axons (from mammillary bodies) ® mamillothalamic tract ® anterior nucleus of thalamus

·         Pituitary gland

1.       Posterior lobe (neurohypophysis) is formed from outgrowth of hypothalamus

-          Neural connections to nuclei that produce oxytocin and vasopressin

2.       Anterior lobe (adenohypophysis) grows out of Rathke’s pouch (roof of mouth)

 

EPITHALAMUS

 

·         Located: dorsal inferior part of thalamus

·         Most caudal aspect of diencephalon

·         Contains:

1.       Posterior commissure

2.       Habenular nuclei

3.       Pineal gland

·         Pineal gland

-          lies caudal to posterior commissure and habenular nuclei

-          produces melantonin

-          secretion of melantonin is controlled by light

 

SUBTHALAMUS

 

·         located: ventral to thalamus

·         includes:

1.       subthalamic nucleus

2.       zona incerta

3.       prerubral fields of forel (fiber bundles rostral to red nuclei)

 

SUBCORTICAL TELENCEPHALIC NUCLEI

 

BASAL GANGLIA = CORPUS STRIATUM

Neostriatum (new part)

1.      Caudate nucleus

2.      Putamen

Paleostriatum (old part)

3.      Globus Pallidus

 

Lenticular nucleus = putamen and globus pallidus

 

Involved in planning stages of motor function

 

Caudate Nucleus

·         Associated with lateral ventricle

·         Internal capsule separates caudate from lenticular nucleus

Anterior limb = lenticulo-caudate limb (ID: if you see septum pellucidum medially)

Posterior limb = lenticulo-thalamic limb (ID: if you see thalamus medially)

 

Meynert’s Nucleus

            Degenerates in Alzheimer’s

            Located: ventral to anterior commissure

Substantia Nigra

            Degenerates in Parkinson’s disease

 

LIMBIC SYSTEM

Involved in initiation of behavior necessary for survival and propagation of the species

Follows a C – shape

Degenerates in Alzheimer’s disease

 

CORTICAL PART (rostral – caudal along C)

1.       Subcallosal gyrus

2.       Cingulate gyrus

3.       Parahippocampal gyrus

4.       Uncus

 

DEEP TO CORTICAL PART (rostral – caudal along C)

1.       mallillary bodies

2.       Fornix

columns

body

crura

3.       hippocampus

4.       amygdaloid bodies

 

Both amygdala and hippocampal formation connect to hypothalamus

 

STRIA TERMINALIS

Connects amygdala ® hypothalamus and septal nuclei

STRIA MEDULLARIS

Connects habenular nuclei ® septal nuclei

 

CEREBRAL HEMISPHERES

 

SULCUS

Medial longitudinal fissure – divides right from left

Central sulcus – divides frontal lobe from parietal lobe

Lateral fissure – insular lobe is deep to it, temporal lobe lies ventral to it

Parieto-occipital sulcus – most prominent in mid-sagittal section

Calcarine sulcus

Collateral sulcus – between parahippocampal and occipitotemporal gyrus more caudal

Rhinal sulcus - between parahippocampal and occipitotemporal gyrus more rostral

Olfactory sulcus – between gyrus rectus and orbital gyri

 

LOBES

Frontal lobe

Parietal lobe

Temporal lobe

Occiptal lobe

Insular lobe

 

GYRUS

Frontal Lobe:

Precentral gyrus = motor

Postcentral gyrus = sensory

Superior, Middle, and Inferior Frontal Gyrus

Gyrus rectus

Orbital gyri

 

Temporal Lobe:

            Superior Temporal gyrus = primary auditory cortex lies on section in lateral fissure

            Middle and Inferior Temporal gyrus

 

Temporal, Occipital, and Parietal Lobes

Supramarginal gyrus = horseshoe around lateral fissure

Angular gyrus = adjacent to supramarginal in a traingular shape

 

Insular Lobe:

            Transverse Temporal gyrus (Heschl’s gyri) = part of primary auditory cortex

 

Occipital Lobe:

Primary Visual Cortex = located bilaterally on either side of calcarine fissure

            Cuneus (wedge shaped portion dorsal to calcarine fissure)

            Lingula (tongue shaped portion ventral to calcarine fissure)

 

Ventral ® Dorsal

-          Corpus callosum

-          Sulcus of corpus callosum

-          Cingulate gyrus ® isthmus ® parahippocampal gyrus

-          Cingulate sulcus

 

Uncus = Medial directed bump on parahippocampal gyrus / amygdala lies deep to it

Occipito – temporal gyrus = lies lateral to parahippocampal gyrus

BRODMAN NUMBERS

 

Primary somatosensory              3, 1 and 2            postcentral gyrus

Primary motor cortex               4                      precentral gyrus          

Supplementary motor cortex            6                     

Broca’s (motor speech)             44 and 45         inferior frontal gyrus

Wernicke’s (sensory speech) 22                     superior temporal gyrus

Primary auditory cortex               41 and 42            superior temporal gyrus and transverse temporal gyrus

Primary visual cortex               17                     occipital pole / sides of calcarine fissure (cuneus + lingula)

Visual coordinating areas            18 and 19           

 

 

4 TYPES OF WHITE MATTER

 

1.      Commmisural fibers

·         Corpus Callosum

            Rostrum

            Genu (knee)

            Body/Trunk

            Splenium

·         Anterior commisure

Most dorsal aspect of lamina terminalis

Splays out laterally

Communicates: temporal lobes ® olfactory lobes

·         Other comisures that are not telencephalic

Posterior commissure

            Part of diencephalon (epithalamus)

            Communicates: left superior and inferior colliculi ® right sup. and inf. colliculi

                        Habenular commisure

                                    Part of diencephalon (epithalamus)

                                    Communication: diecephalon ® limbic

                       

2.      Corona radiata

Fanned out white matter directly underneath the cortex

            Collect into internal capsule

 

3.      Projection fibers

Origin in a neuron cell body in cortex

Goes out of cortex to underlying structures

 

4.      Association fibers

Ipsilateral communication

            Uncinate fasciculus

                        Communicates: frontal lobe ® temporal lobe

            Cingulum

                        Communicates: limbic ® cortex

            Arcuate fasciculus

                        Communicates: Broca’s area ® Wernicke’s area

 

VENTRICULAR SYSTEM

 

LATERAL VENTRICLES

            Anterior horn

            Body

            Posterior (occipital) horn

            Inferior (temporal) horn

            Trigone (atrium) – where all three horns meet

 

THIRD VENTRICLE

            Located: between medial thalamic walls

Lamina terminalis – anterior limit of ventricular system

Supra-optic recess

            Infundibular recess

            Pineal recess

 

CEREBRAL AQUEDUCT

            Located: only in midbrain

Communicates: 3rd and 4th ventricles

                       

FOURTH VENTRICLE

            Located: inbetween open medulla / pons and cerebellum

            Tectum (roof) = superior medullary velum

            CSF exits ventricular system into the subarachnoid space

-         Foramen of Magendie: on the midline

-         Foramen of Luschke: lateral

 

CSF

 

CHOROID PLEXUS

Formed by:

            Choroid epithelium (modified ependyma)

            Blood vessels

            Connective tissue

 

Blood suppy:

            Anterior choroidal artery (branch of internal carotid artery)

            Posterior choroidal artery (branch of posterior cerebral artery)

 

Found:

            Ventral floor of lateral ventricles

            Posterior horn ® trigone area

                        ¯

Foramen of Monro (interventricular foramen) – connects: lateral ventricles and 3rd ventricle

                        ¯

            Dorsal roof of 3rd ventricle

            ¯

            NO CHOROID PLEXUS IN CEREBRAL AQEDUCT

                        ¯

            pops up in 4th ventricle

 

Ependyma

 

            Cuboidal cells that line ventricles in a continuous single layer

            Gap junctions (leaky)

            Cilia to aid movement of CSF

            Modified form of these cells make choroid plexus

 

Capillary Endothelial Cells

           

            Blood brain barrier

                        Tight junctions

                        Few pinocytotic vesicles

                        ­ mitochondria for active transport

            Astrocytic feet (podocytes)

                        Surround endothelial cells

                        Protectors of blood brain barrier

                        Maintain ion balance

 

FORMATION OF CSF

 

CHOROID PLEXUS is major producer

            Hydrostatic pressure

between brain capillaries and choroid epithelium

                        pushes water and ions out and into ventricles

                        \an ­ in serum osmolality ¯ CSF formation (does not favor filtration)

            Active transport

                        Vitamin C

                        Nucleotides

                        Folates

                        Pyridoxal phosphate

            Ion Exchange

                        Sodium

                        Chloride

                        Potassium

 

EXTRACHOROIDAL FORMATION

            Transependymal movement (leakage of water through gap junctions in ependymal cells)

 

ABSORPTION OF CSF

            Rate of absorption = rate of formation

                        ­pressure, ­ absorption

 

Arachnoid villi and granulations

                        Major absorptive components of CSF

                        Herniations of arachnoid

Penetrate gaps in dura

Protrude into lumen of superior sagittal sinus

Vacuoles in arachnoid cells pick up CSF ® empty into venous system

 

 

FUNCTIONS OF CSF

            Physical support

Buoyancy reduces weight

Cushioning against shock   

            Excretory

                        No lymphatics for brain

                        CSF carries away metabolic wastes

            Intracerebral transport

            Control of chemical environment

 

COMPOSITION OF CSF

            Colorless

            Lot less protein than blood

 

DISEASES

            Meningitis

                        Bacterial - ­ protein, ­ WBC, ¯ glucose

                        Viral – protein and glucose normal, ­ WBC

                        Fungal - ­ protein, ­WBC, ¯ glucose

            Fungal Infections

            Multiple sclerosis

                        Demyelination or sclerotic plaques

                        ­ WBC, ­ protein

                        IgG present

            Viral Infections

                        CSF not valuable diagnostic tool

            Brain Tumor

                        Increased pressure in cranium (hydrocephaly)

                        Decreased pressure in cord

\Spinal Taps Are Not Recommended (danger of herniation)

            Reyes Syndrome (Hepatitic Encephalopathy)

                        Children

                        Viral disease of liver

                        Aspirin

                        ­ ammonia ® brain

                        causes deimensia and night terrors

 

VACULATURE

 

REGULATION OF BLOOD FLOW

3 mechanisms

1.       Autoregulation

Vessels constrict and dilate depending on blood pressure

2.       Response to metabolites

Vessels dilate when ¯ oxygen, ­ CO2, ¯ pH

3.       Autonomic nervous system

 

CEREBRAL VASCULAR DISEASE

1.       Occlusive disease –extracranial

2.       Thrombus – blood clots

3.       Embolism – caused by blood clots or plaques breaking free

4.       Hemorrhage

5.       Aneurysm – dilation of vessel wall due to thinning or weakness

 

ARTERIES

 

Spinal Cord

            Vertebral artery

Anterior spinal artery (anterior 2/3 of spinal cord)

Posterior spinal artery (dorsal 1/3 of spinal cord)

            Radicular arteries

                        Come from intercostal arteries or descending aorta

                        Supply cord, vertebra, and meninges

                        Artery of Adamkiewicz

from descending aorta

major supply of bottom 2/3 of cord

 

Brain

            Internal Carotids

                        Carotid canal ® cavernous sinuses (zig-zags to form carotid siphon) ® branches

                        Branches

                                    Opthalmic artery

                                    Anterior choroidal artery

                                    Posterior communicating artery

                        Bifurcates

                                    Anterior cerebral artery – supplies medial side

                                                Medial striate arteries

caudate

part of internal capsule

                                    Middle cerebral artery – supplies lateral side

                                                Lenticulostriate arteries

rest of internal capsule

globus pallidus

putamen


 

 

            Verterbral arteries –transverse through cervical vertebra’s transverse foramen

                        PICA – posterior inferior cerebellar artery

            Basilar artery –formed from union of vertebral arteries

                        AICA -            anterior inferior cerebellar arteries

                        Labyrinthine artery (auditory)

                        Pontine arteries

                        Superior cerebellar artery

                        Posterior cerebral artery

                        Thalomogeniculate arteries

 

Anastomotic connections

            Circle of Willis

                        Internal carotid or middle cerebral artery

Anterior cerebral arteries

                        Anterior communicating artery

                        Posterior communicating artery

                        Posterior cerebral

            Terminal ends of cerebral arteries

 

VEINS

 

straight sinus ®transverse sinus ® sigmoid sinus ® jugular vein

 

Lateral superficial veins ® sinuses or jugular vein

 

Deep veins ® straight sinus

 

Internal cerebral veins ® great vein of Galen ® straight sinus

 

Thalamostriate vein –associated with stria terminalis

 

 

 

DEVELOPMENT OF NEURAL SYSTEM

 

3rd week nervous system first appears

 

            notochord (medoderm) induces ectoderm ® neural plate

            now these cells have neural fate

           

            neural groove forms

            neural crests rise on either side

           

            neural crests meet at midline ® neural tube

            ectoderm closes over it

                        Anacephaly: failure of anterior neuropore to close

                        Spina Bifida: failure of posterior neuropore to close

 

            Neural tube ® will form entire CNS (brain and spinal cord)

Neural Crest cells ® many migrate and form most of PNS (site of migration determines fate)

-          Dorsal root ganglia

-          Cranial ganglia

-          Autonomic ganglia

-          Enteric neurons in gut

-          Glia in PNS

-          Adrenal medullary (chromaffin cells)

Neural Canal (lumen of neural tube) ® ventricular system

 

4th week – 3 vesicle stage

 

prosencephalon

mesencephalon

rhombencephalon

 

cephalic flexure at midbrain develops

 

5th week – 5 vesicle stage

 

            Prosencephalon

                        Telencephalon –cerebral cortex, basal ganglia, limbic system, and

                        olfactory

                        Diencepalon – thalamus, hypothal., epithal., subthal., neural retina,

                         and optic tract

 

            Mesencephalon - midbrain

 

            Rhombencephalon

                        Metencephalon – pons / cerebelllum

                        myelencephalon – medulla


 

 

Sulcus Limitans 

 

            Divides neural tube into dorsal and ventral portions

                        Alar plate

                                    Dorsal = Sensory

 

                        Basal plate

                                    Ventral = Motor

 

            Persists into 4th ventricle

            Continues as hypothalamic sulcus in diencephalon

 

EMBRYO / HISTOLOGY

 

Neural Tube (stratified epithelium) cells move:

 

            Pial surface (DNA synthesis)

                        ¯

            ventricular surface (mitosis)

 

Daughter cells then divide and differientiate

            Neuroblasts

            Glioblasts

                        Ependymal (line venticles)

                        Radial (important in migration railroad track)

 

SPINAL CORD

            Ependymal layer (from glial cells)

            Mantle layer ( H-shaped gray matter)

            Marginal layer (myelinated axons / white matter)

 

New neurons: pre-natally only

New glial cells: pre- and post-natally

Myelination: pre- and post-natally

 

MIGRATION

·         Radial cell scaffold

Interacts with growth cone of leading process of neuron

Contact – mediated guidance

·         Guidepost cells

Surface molecules guide neurons

·         Molecular events

Chemoaffinity

Cell adhesion to ECM (fibronectin, laminin, and collagen)

·         Growth cones

Guide axons to target

Have lamellapodia and filopodia

·         Neurites

Baby axons and dendrites

 

GROWTH AND DIFFERENTIATION

 

Regional Identity

            Rostral – caudal axis determined by gastrulation

            Dorsal – ventral determined by sulcus limitans

            Floor plate ® expresses shh   

 

Cell Identity

            Intrinsic factors –genetic within cells

            Extrinsic factors – diffusable factors, neurotrophic factors, environment, cell –cell interactions

 

Neurons differentiate first then glial cells

 

Neuroblasts = spherical baby neuron

                        One neurite process becomes axon

 

SYNAPTOGENESIS

            Nerve gets to muscle and causes Ach receptors to aggregate around axon

            Basal lamina is established

 

MYELINATION

            In CNS: oligodendrites

            Develops relatively late

            Sensory areas are done first

            Continues after birth (clumsy baby)

 

MATURATION

            More processes ® greater area of synapses ® greater functional interaction

            Elaboration of dendritic tree is sign of maturity

 

CELL DEATH

            Function: reduce population to appropriate # of nerve cells with appropriate connections

           

            Intrinsic cell death (apoptosis – programmed)

            Extrinsic cell death (fail to form appropriate conneciton)

 

 

 

 

NEURON HISTO

 

Cell body = soma = perikaryon

Dendritic thorns ® increase surface area

 

NEURON TYPES

            Multipolar – most abundant

            Pseudounipolar – found in dorsal root ganglion

            Bipolar – special sensory organs

 

            Projection Neuron = long axon = Golgi type II

            Interneuron = short axon = Golgi type II

 

ORGANELLES

·         Centrally located light staining nucleus (due to ­ euchromatic DNA)

·         Deep staining nucleolus (RNA activity)

·         Nissl substance (dark staining RER / very metabolically active) –not found in axon

·         Cytoskeletal elements

-          Neurotubules (microtubules)

                                    Maintain shape of neuron

                                    Involved in axon transport

                                                Orthograde – in direction of action potential uses

                                                 kinesin

                                                Retrograde – back towards cell body uses dynein

-          Neurofiliaments (intermediate filaments)

Lined longitudinally in axons

Form bundles called neurofibrils

-          Actin (microfilaments)

Found in growth cones

Function in developmental extension

 

MYELINATION

            PNS: Schwann cells / one cell provides one segment of myelin

            CNS: oligodendrite / one cell provides many axons myelin

 

            Node of Ranvier: gap between myelinated segments

            ­ thickness of myelin, faster action potention

           

            neurolemma = cell membrane of Schwann cell

            Satellite Cells: PNS non-myelinating cells function to isolate cell bodies from

            synapses


 

 

SYNAPSES- action potential cascade leads to Ca++ into cell and vesicle release into synapse

types

            Axodendritic

            Axosomatic

            Axoaxonic (presynaptic inhibition)

 

Components

            Presynpatic terminal

                        Mitochondria

                        Sypnaptic vesicles

                        Presynaptic release sites

            Sypnaptic cleft

            Postsynaptic component

                        receptors

 

 

Neuropil = space between neuron cell bodies

 

Tau ® MAP (microtubule associated protein) ® neurofibrillary tangles in Alzheimers

 

GLIAL HISTO

 

Glial cells

            Retain capacity to divide (cancer)

            Do not form synapses

            Processes are all similar (no axon vs. dendrites)

            Do not conduct action potentials

 

CLASSES OF CNS GLIA

1.       Macroglia

Astrocyte

Oligodendrite

Ependymal cells

2.       Microglia – macrophages / not derivative of nervous system

 

FUNCTIONS

General:

Structural support

Myelination

Repair and regeneration

Development of nervous system

Uptake and release of neurotransmitters

Isolate neurons

Nutritive role

Maintain blood brain barrier (do not create, tight junctions do that)


 

Oligodendrocyte            CNS            Myelination

                                                Mainly found in white matter

                                               

Astrocyte                      CNS            Structural support

                                                Repair processes (reactive astrocytes become phagocytic)

                                                Endfeet provide protection to pia mater “glia limitans”

                                                Metabolic exchange between neurons and glia

                                                Mainly found in gray matter

 

Ependymal cells            CNS            Cuboidal cells that line venticles and have cilia + microvilli

                                                Choroid plexus is modification

                                                Tanycytes – single central cilium and microvilli

 

Microglia                      CNS            Resident macrophages

                                                Very small and have squiggly processes

 

Schwann cell                 PNS            Myelination

                                                Divide and help in repair of nerves

 

Satellite cell                   PNS            Non-myelinating cells

                                                Isolate ganglion cell bodies

 

** Absolutely diagnostic for Astrocytes are end feet that project to capillaries or to pia.

** Never see neuron cell bodies in white matter

 

CYTOARCHITECTURE OF PERIPHERAL NERVE

Epimeurium = Surrounds whole nerve

Perineurium = Surrounds each nerve fascicle (bundle)

Endoneurium = Surrounds individual nerve axons

 

DORSAL ROOT GANGLION

            Surrounded by connective tissue

            Pseudo-unipolar neurons

            Satellite cells present

            ID: alternating bands of circular cells bodies and wavy layers of peripheral nerve

             bundles

 

SPINAL CORD 

            H-shaped gray matter in center

            Laminar arrangement of gray matter

                        Layers 1- 6

                                    dorsal horn

sensory

layer 2 = substantia gelatinosa

                        Layers 7 –9

                                    Ventral horn

                                    Motor

                        Layer 10

                                    Central canal


 

CEREBRAL CORTEX

1.       neocortex

1.      molecular layer –mostly dendrites / activity on EEG

2.      outer granular

3.      outer pyramidal

4.      inner granular

5.      inner pyramidal

6.      polymorphic

 

2.       archicortex - hippocampus

3.       paleocortex - olfactory

 

vertical columns of cells act as functional units

 

INJURY AND REGENERATION

 

Crush injuries have best prognosis

 

Complete severence of PNS nerve

 

Degeneration

Events distal to lesion

            Wallarian degeneration (anterograde degeneration) complete

                        Axon

                        Motor end plates

                        Myelin sheath

            Schwann cell bodies remian

                        Some divide and form cells

                        Others phagocytize damaged material

Events proximal to lesion

            Axon and myelin sheath degenerate for a node or two

            Neuron cell body swells

            Nucleus is pushed off center

Chromatolysis: Nissl substance dissolves (ribosomes detach form RER and disperse)

 

Regeneration

            Schwann cells form neurolemma or Von Bungner tubes

            Tips of regenerating axon on proximal side of lesion sends out many growth cones

            If one of these tips reaches the tube it may reach the target organ again

Neroma = when non-connecting tips persist (painful)

            There is an appropriate time period

            If appropriate contact is made, there will be re-myelination but not to same

             degree

            All the while cell body is restored

            Closer to spinal cord less chance of regeneration

            If axon fails to regenerate, cell body will die

 

Regeneration in CNS

            Does not occur as well

                        Lack of trophic factors from target organs

                        Oligodendrites secrete inhibitory factors

                        Astrocyte scarring

 

 

 

Stroke

         Abrupt onset of neurologic deficit

         Matches cerebral function perfused by vessels

Any size vessel can be involved

Permanent damage to neuron

         Symptoms are usually maximal acutely

         Spasticity occurs chronically

 

TIA (transient ischemic attack)

            Abrupt onset of neurologic deficit

            Matches cerebral function perfused by vessels

            Neurologic deficit completely resolves over 15 minutes

            Occurs in big vessels

            No neurons permanently damaged

 

A Pure motor stroke is most likely in the internal capsule

 

 

Monro – Kellie Doctrine

            If you put something in your head something else has to come out or the pressure ­

 

CPP = MABP – ICP

Cerebral Perfusion Pressure = mean arterial blood pressure – intracranial pressure

When ICP exceeds blood pressure there is no cerebral blood flow--death

 

Hydrocephalus is usually caused by obstruction of CSF pathway

cerebral aqueduct is most common site of blockage

 

ION CHANNELS

 

TYPES OF CHANNELS

 

1.       Non-gated 

-          Responsible for passive properties of membrane (membrane resistance)

-          Responsible for resting potential

 

2.       Gated

Voltage gated channels

-          responsible for action potentials

Ligand gated channels

-          responsible for PSP’s, EPP’s, and receptor potentials

-          intracellular ligand or external ligand

stretch or pressure gated

-          responsible for receptor potentials

 

Ions bind briefly to charged groups within the walls of the channel’s pore.

\ flux through channel is not a linear process and channels can be saturated.

 

CHANNEL SELECTIVITY (not all channels are selective)

 

·         valence of ion (cation channels do not conduct anions and vice versa)

·         size of hydrated ion (smaller ions have larger hydration shell \ Na+ is “larger” than K+)

·         shape of hydrated ion

·         distribution of polar amino acid residues lining pore

·         affinity of ion for binding to amino acid residues

 

Selectivity filter – the narrowest region of the channel

Ex.       Na+ enters channel with 2 water molecules

            Dissociates from one water

            Binds to oxygen in an amino acid residue in pore

            Re-associates with another water on intracellular side

 

Inward currents (-)

Outward currents ( +)

 

Conductance = 1/R

(ohms: V = IR)

Resistance = V/I

Conductance = I/V

 

For some channels, flow (I) vs. voltage (V) is linear (ohmic) where slope = conductance

 

Inward rectification – conductance is greater for inward current (slope is steeper on negative side)

Outward rectification – conductance is greater for outward current (slope is steeper on positive side)

 

Focal process – local conformational change

 

 

Activation:             closed ® open

 

Inactivation:             open ® inactive

                        closed ® inactive

 

Removal of inactivation: inactive ® closed (never to open from inactive state)

 

INACTIVE OR REFRACTORY STATE

Non-conduction of ions even when channel is “open”

 

Mechanisms:

1.       Voltage induced–       depolarization causes amino or carboxy end of channel protein to block pore.

                                    repolarization causes channel to close

 

2.       Ca++ binds to site on inside surface of channel

3.       Ca++ induced dephosphorylation

 

MOLECULAR STRUCTURE OF ION CHANNELS

 

Sodium and Calcium channels

-          A single polypeptide with 4 domains of 6 membrane spanning a - helices

-          The 4th membrane spanning region is a voltage sensor

-          P – domain forms the pore between 5th and 6th

 

Potassium channels

-          one domain of 6 membrane spanning a -helices and a P region between the 4th and 6th

-          four of these subunits come together to make a channel (\ K+ channel has more diversity)

 

PATCH CLAMP TECHNIQUE

 

Single channel recordings

Seal pipette on membrane patch

Measure conductance of single channel

Measure probability that channel will open and close

 

Whole cell recordings

            Rupturing membrane patch

            Measure kinetics and voltage dependence of whole cell trans-membrane ionic

             currents

 

 

 

Membrane potential – caused by a separation of charge across a membrane

 

DEVELOPMENT OF K+ EUILIBRIUM POTENTIAL (Ek+ = - 95mV)

 

Membrane permeable only to K+

K+i  > >  K+o

 

Efflux of K+ (non-gated channels) \ positive charge outside & negative inside

Diffusion continues until positive charge on outside repels K+ and prevents further net diffusion

No net force on ion (Fe = - Fc) electrostatic force is equal and opposite to chemical force

Influx K+ = efflux K+

This equilibrium does not occur in the cell.  There is a net efflux of K+)

 

CALCULATION OF EQUILIBRIUM POTENTIALS

 

Euilibrium potential is proportional to the concentration gradient

E µ Co / Ci  when Co > Ci

E µ Ci / Co when Ci > Co

 

E is positive if a positive charge on the inside of the cell would oppose diffusion (Na+)

E is negative if a negative charge on the inside of the cell would oppose diffusion (K+ & Cl-)

 

RESTING POTENTIAL (-70 mV)

Steady state condition in which there is no net current across cell membrane (sum of all I = 0)

 

Generated by:

                Constant diffusion of K+ and Na+

                Cl- in skeletal muscle

 

Depends on:

                [gradients] of permeable ions (primarily EK & ENa)

                relative conductances of membrane (gK & gNa)

 

Calculation:

                RP = [gK / (gK + gNa)] EK  +  [gNa / (gK + gNa)] ENa]        

 

“weighted average” – fraction of K conductance times it E plus fraction of Na times its E

RP is closer to EK because gK > gNa

 

ELECTROCHEMICAL DRIVING FORCES

DF = (RP – E)

DFNa  > DFK

 

CURRENTS

I = g (V – E) or I = g (RP –E)

 

Na+ & K+ aren’t at equilibrium at RP.  (K+: Fc > Fe net efflux) & (Na+: Fc & Fe are both directed inward net influx)

 

Na-K pump

Electogenic: makes RP 2 – 4 mV more negative

Prevents run down of gradients: maintains RP / amount pumped = amount diffused

Stimulated by: increase of intracellular [Na+]

Inhibited by: reduction of ATP (hypoxia or ischemia) or cardiac glycosides (ouabain, digitalis) –will depolarize

 

Hyperkalemia - ­ [Ko], ¯ [Ki]/ [Ko], ¯EK, ¯ K+ efflux, ® depolarize RP                I = g (V-E)  is decreased \ IK ¯

Hypokalemia -                ¯ [Ko], ¯ gK, ® depolarize RP                                                           I = g (V-E)  is decreased \ IK ¯

 

Review

Driving Force = RP – E

Na+ driving force >> K+ driving force

K+ conductance > Na+ conductance

I = g (Vm – E)

 

At RESTING POTENTIAL: IK = INa

-          Hyperpolarization/repolarization (net outward current)        IK > INa

-          Depolarization (net inward current)        INa > IK

Vm = membrane potential (separation of charge)

-          moves closer to EK in hyper/repolarization

-          moves closer to ENa in depolarization

 

depolarization

-          opens Na+ channels

-          opens K+ channels

-          inactivates Na+ channels (slow or sustained depolarization)

repolarization

-          closes K+ channels

-          removes inactivation of Na+ channels

 

STRUCTURAL BASIS OF CHANNEL GATING

-          Open: depolarization rotates four S4 a-helices clockwise

-          Inactivation: depolarization moves a positively charged ball into pore (slow)

-          Close: repolarization rotates four S4 a-helices counter-clockwise

-          Removal of inactivation: repolarization removes ball

 

Na+ channels vs. K+ channels

Slow depolarization inactivates Na+ channels but not delayed rectifier K+ channels

Depolarization increases conductance for both

Na+ influx is regenerative but K+ efflux is not

 

PHASES OF ACTION POTENTIAL

 

Resting potential                IK = INa

 

Subthreshold                        IK > INa

 

Threshold                              IK = INa

 

Upstroke                                IK < INa

 

Peak                                        IK = INa

 

Repolarization                       IK > INa (Na+ channels inactivated, K+ channels open)

 

Hyperpolarization after a.p. IK > INa

 

Resting potential                IK = INa (K+ channels close due to repolarization)

 

INa > IK for an action potential to be generated

 

ALL-OR-NONE

All -   Amplitude, shape and duration are always the same regardless of stimulus strength

Once threshold is reached is action potential is self generating

None-     If stimulus fails to depolarize to membrane threshold there will be no action potential

 

ELECTRICAL SYNAPTIC TRANSMISSION

 

                Excitatory actions only

                No plasticity

                Bidirectional

Faster

-          No synaptic delay

-          Channels have ¯ resistance and ­ conduction

 

Agent of transmission: Ionic current

Cytoplasmic continuity bewteen pre and post synaptic terminals

                Gap junctions

                2 connexons each made of 6 connexins

                passage of ionic current, 2nd messangers, and small molecules

 

CHEMICAL SYNAPTIC TRANSMISSION

                Inhibitory (hyperpolarizing) or Excitatory (depolarizing)

                Plasticity: long lasting changes

                                Myelination

                                Dendritic arborization

                                Axon redirection

                                ­ activity ® thicker, ­ firing rate

                Unidirectional

                Slower

-          synaptic delay (time for transmitters to be released)

 

Agent of transmission: chemical transmitters

                Synaptic cleft

               

                Presynaptic terminal

                                Mitochondria and ER to make sure intracellular Ca++ is low

                                Local ­ [Ca++]is key to transmitter release

                                Active zones(fuzzy dark thickenings) – docking and release

 

THE STORY

1.        presynaptic action potential depolarizes terminal

2.        depolarization opens voltage gated Ca++ channels (Ca++ influx)

3.        Ca++ allows release of transmitter enriched vesicles from cytoskeleton and exocytosis into cleft

4.        Transmitters react with postsynaptic receptors

5.        Movement of ions and development of postsynaptic potentials

6.        Upon reaching threshold, action potential occurs in postsynaptic neuron

 

RECEPTORS

Membrane spanning

                Direct / ionophoric / fast / channel and receptor are one in the same / ex: cholinergic and nicotinic

                Indirect / metabotropic / slow / channel and receptor are two separate entities / use of 2nd messangers

 

Property of receptor determines action of transmitter

 

NEUROMUSCULAR JUNCTION (NMJ)

 Characteristics

1 Muscle fiber (at end plate region) : 1 motor axon

Directly gated chemical transmission

Transmitter: Ach

Receptor: Nicotinic Ach receptors

 

Presynaptic:

            Synaptic boutons

            Active zones

Postsynaptic:

            Junctional folds

            AchE

 

EPP

Unusually large

Always produces an action potential in muscle fiber (by activating regenerative Na+ channels)

Has decremental decay with distance (leaks charge)

 

 

Ach degradation

-          major means of Ach inactivation

-          AchE located in junctional folds

-          High affinity choline uptake process

 

VOLTAGE GATED            VS.            CHEMICALLY (LIGAND) GATED

Channel size:                 smaller                                      larger

Ion selectivity:               more selective                            less selective

Regenerative:                yes                                           no

Pharmacology               tetrodotoxin (Na+ channel)            bungarotoxin and curare (nicotinic AchR)

 

Note: Chemically (ligand) gated channels and voltage gated channels are in parallel \ EPP’s depolarize activate regenerative Na+ channels.

 

MOLECULAR STRUCTURE OF AchR

 

-          Direct / ionophoric

-          Recognition site:

-          2 a subunits (bind Ach)

-          5 subunits form pore

-          Negatively charged amino acid in pore

-          After transmitter binds, conformational change causes opening of channel

-          Na+ flows in while K+ flows out simultaneously

 

SYNAPTIC TRANSMISSION MEDIATED BY SECOND MESSANGERS

-          Slower in onset (modulating)

-          Longer in duration

-          Many transmitters / few 2nd messenger pathways

-          Receptor and effector are separate molecules and can be coupled by a G protein 

 

RECEPTORS

Seven membrane spanning domains

 

G – PROTEINS

a,b, and g subunits

a subunit conveys specificity and has GDP

transmitter (NE /Ach/histamine) binding to receptor (b-adrenergic, muscarinic, histamine)

allows G-protein (with ADP) to bind to receptor

this causes the GDP to be replaced by a GTP

this causes the a subunit (bearing GTP) to dissociate from the b and g subunits

the a subunits then binds to the primary effector (adenylyl cyclase/phospholipase C/phospholipase A)

this affects catalytic activity of primary effector

hydrolysis of GTP to GDP causes a subunit to dissociate from primary effector

a subunit then reassembles with b and g subunits

 

cAMP pathway

External signal (1st messanger): NE

 

Receptor: b - adrenergic receptor                       

Transducer: Gs

Primary effector: Adenylyl cyclase

 

Second messanger: cAMP

Secondary effector: cAMP dependent protein kinase

 

IP3 – DAG system

External signal (1st messanger): Ach

 

Receptor: Muscarinic Ach receptor                       

Transducer: Go

Primary effector: Phospholipase C

 

Second messanger: IP3 and DAG

Secondary effector: IP3 ® Ca++ release and DAG ® protein kinase C

 

Arachindonic acid

External signal (1st messanger): Histamine

 

Receptor: histamine receptor           

Transducer: Go

Primary effector: Phospholipase A2

 

Second messanger: Arachidonic acid

Secondary effector: lipoxygenase and cyclooxygenase (eicosanoids)

2nd messengers MODULATE

can act directly (fast) to OPEN or CLOSE ion channels

can act indirectly (slow) through protein phoshorylation to OPEN or CLOSE ion channels

 

2nd messengers and DESENSITIZATION

            loss of receptor responsivelness due to pronlonged exposure to transmitter

            due to phosphorylation of cytoplasmic domains of the receptors

            alters G-protein binding or channel subunit

 

2nd messengers and GENE EXPRESSION

            Phosphorylation of transcriptional regulatory proteins causes changes in protein synthesis

 

OTHER 2ND MESSENGER PATHWAYS (do not use G-proteins)

 

Tyrosine kinases

-          used by growth factors

-          span the membrane only once

-          phoshorylate tyrosine residues

 

cGMP

-          cGMP synthesis is stimulated by nitric oxide

-          cGMP dependent protein kinase

 

 

Differences in SYNAPTIC TRANSMISSION in CNS vs. NMJ

 

            CNS                                                     NMJ

            excitatory & inhibitory                           excitatory only

           

PSP’s  < 1mV                                      EPP’s » 70mV

           

Neurons receive input from                 1 motor neuron : 1 muscle fiber

            100’s of presynaptic neurons

 

 

Postsynaptic potential properties

-          transmitter generated

-          graded potentials – variable amplitude

-          local potentials – decremental decay

-          no threshold

-          no refractory period

-          long duration allows summation

 

 

EXCITATORY PROCESSES IN THE CNS

 

EPSP’s

-          depolarizing

-          produce influx of Na+ ions moving Vm towards ENa

 

GLUTAMATE RECEPTORS

Classification

    Ionophoric

-          NMDA (N-methyl-D-asparate)

            Agonists: Glutamate and NMDA

            Channel selectivity: Na+, K+, Ca++

            Ca++ has long lasting changes

            Modifier: glycine required (an inhibitory amino acid)

            Gated: Voltage (Mg++ regulated) and chemically

-          Non – NMDA

            Agonists: Glutamate (endogenous), kainate, AMPA, and quisqualate

            Channel selectivity: Na+and K+

Metabotropic

 

Function

    Depolarization

    Produce EPSP’s

 

Pathology

    Glutamate toxicity

              Excessive influx of Ca++

                  Excessive activation of proteases and free radicals

            Status epileptics

    Huntington’s chorea

            Stroke

INHIBITORY PROCESSES IN CNS

 

2 Methods

 

1.       Hyperpolarization (IPSP’s)

    Prevents membrane from reaching threshold

    Channels for ions having a E more negative than RP open (K+efflux, Cl- influx)

           

    Agonists:   GABA  – inhibitory tramsmitter in the brain and spinal cord

                                       synthesized from glutamate (an excitatory amino acid)

                          Glycine – inhibitory transmitter in spinal cord

           

            Method:  ­ Cl- influx

 

2.       Stabilization or Clamping Vm

            If RP = ECl- cannot have IPSP’s (­GABA does nothing)

    Stabilize/clamp Vm at ECl-

            ¯ size of EPSP’s (when GABA released with glutamate smaller PSP created) ECl-

 

NEURONAL INTEGRATION in the CNS

 

- PSP’s summate at the initial segment (axon hillock)

-  If temporal and spatial summation reaches threshold an action potential will be generated

-  Long length and time constants increase summation increase probability of reaching threshold

- amplitude of summated potentials determines the rate of discharge

 

 

Final integrator: axon hillock

            Site of neuronal integration

            Lowest threshold

            Highest density of voltage gated Na+ channels

            Converts summated PSP’s into an action potential

 

 

TRANSMITTERS

-          neuronal synthesis

-          present in presynaptic terminal

-          exerts an action upon release into synaptic cleft

-          exogenous and endogenous effects mimic each other

-          inactivation mechanisms exist

 

RECEPTORS

-          Receptor type is defined by the neurotransmitter that interacts with the receptor.

-          A receptor type can be subdivided into subtypes on the basis of selective agonists and antagonists.

-          Receptor determines action of transmitter.

 

ACETYLCHOLINE

Ach synthesis (in presynaptic terminal)

choline              +            AcetylCoA     ®             acetylcholine    (choline acetyltransferase)

 

Inactivation: Acetylcholinesterase and then uptake of choline

 

Ach location

-          Motor neurons:

All Preganglionic neurons

Parasympathetic Postganglionic neurons

-          Nucleus Basilis of Meynert

-          Septal nucleus

-          Striatum

-          Lateral hypothalamus

 

NEUROPEPTIDES

-          Composed of two or more amino acids

-          There exists more than 50

-          Peptide effects are slower in onset (develop gradually)

-          Effects have a longer duration

 

Synthesis

Proteolytic cleavage by peptidases from large precursor  proteins (preprohormones and prohormones)

Precursors often are polyproteins that contain different peptides

Synthesized by ribosomes located in cell body and transported down axon to terminal in vesicles

 

Inactivation

No evidence for re-uptake

DEGRADED BY EXTRACELLULAR PROTEASES

Peptidergic receptors have a higher affinity for peptides than classical transmitter receptors

 

Morphine vs. endorphins

-          similar receptor binding site

-          produce analgesia

-          produce drug tolerance and dependancy

-          antagonized by naloxone (opiate antagonist)

 

Substance P

- transmitter in pain afferents from the periphery to spinal cord
BIOGENIC AMINES: transmitters that are synthesized from amino acids

           

CATECHOLAMINES

-          synthesized form tyrosine

-          inactivated principally via re-uptake

-          MAO and COMT  secondarily

-          Synthesis:

Phe      ®            tyrosine             ®            dopa            ®            dopamine         ®            NE            ®            Epi

Phenylalanine                Tyrosine hydroxylase

hydroxylase                   *Rate limiting step

(deficient in PKU)  

 

Dopamine (DA)

Location:            substantia nigra

                                    ventral tegmental area

                                    arcuate hypothalamus

 

Function:            movement

                                    psychosis

                                    neuroendocrine function

 

Major metabolites:  homovanillic acid

 

Norepinephrine (NE)

Location:          locus ceruleus

                                    subceruleus

                                    projects throughout CNS except striatum

                                    solitary nucleus

                                    dorsal motor nucleus of vagus

 

Function:          alerting center

 

Major metabolites:  MHPG (centrally)

                                                Vanillylmandelic acid (peripherally)

 

OTHER BIOGENIC AMINES

Serotonin (5-HT)

-          synthesized form tryptophan

-          inactivated by re-uptake and the MAO enzyme

-          synthesis:

trptophan            ®            5-hydroxytrptophan            ®            5-hydroxytryptamine (serotonin)

                        trptophan hydroxylase                5-hydroxytryptophan decarboxylase

 

Located:             brainstem raphe nuclei to reticular formation

 

Function:            mood –depression

                                                obsessive-compulsive disorders

                                                alcoholism

                                                food intake

 

Histamine

 

TRANSMITTER RELEASE

 

Channel             Blocker

V- Na+             TTX

V- K+               TEA

Ca++                 Mg++

 

CALCIUM IS ESSENTIAL FOR TRANSMITTER RELEASE

            L type calcium channels ® slow rate inactivation

            N type calcium channels ®more rapid rate of inactivation

           

TRANSMITTER IS RELEASED IN QUANTAL UNITS

            Unit synaptic potential

at muscle end plate (mEPP)

results from a fixed sized quantum of transmitter

                        sum of unit potentials = synaptic potential

1 vesicle contains 1 quantum

 

classical vesicles

-          Small

-          clustered in rows at dense bodies

-          some are positioned at active zones (release sites)

-          transmitter discharged by exocytosis at active zones

 

biogenic amine and neuropeptide vesicles

-          larger

-          do not release their contents from active zones

 

Calcium responsibilities

-          Calcium influx µ # of quanta released (­ [Ca++]e doesn’t affect size of quantum)

-          Mobilization of vesicles from the cytoskeleton into active zone release sites

Ca++/calmodulin dependent protein kinase phoshorylates synapsin causing vesicles to be freed

Vesicles move to active zone under guidance of other proteins

-          Docking

-          Fusion of vesicle with plasma membrane at the active zone release sites

-          Fusion pore forms and dilates as exocytosis occurs

-          synaptic delay ® it takes for calcium to diffuse to its site of action to trigger vesicle release

 

Intrinsic cellular mechanisms regulate the [Ca++]

Posttetanic potentiation:

postsynaptic potential persists after tetanic (high-frequency) stimulation due to build up of free Ca++

presynaptic facilitation and inhibition involve changes in [Ca++] stimulated by axo-axonic synapses

 

Concentration of Ca++ channels (Ca++ influx) is greatest at the active zone.


 

SYNAPTIC VESICLES

 

Transmitters are stored in  vesicles

            Protect transmitter from degradation

 

Transmitter is actively taken up into vesicles (carrier mediated transport)

           

Small molecule transmitters are synthesized in the nerve terminal

Peptide transmitters are synthesized in the cell body, packaged and transported to the terminal

 

Cholinergic                                                        Aminergic

Small clear vesicles                                     Small and large vesicles

Facilitated by active zones                              Not facilitated at active zones

Contain: little/no core protein                               Contain: transmitter, core proteins, and peptides

Concentrated by ion trapping                           Concentrated by ion trapping

Complex formation                                              Complex formation

                Inside acidic

 

Vesicular proteins

Anchoring

-          synapsins (dephosphorylated = attached)

 

Bind Ca++

-          annexins

 

Fusion

-          synaptotagmin

-          synaptophysin

 

Synaptic vesicles are recycled either

            locally in terminal

            through lysosomal degradation and return to cell body

 

If retrieval of vesicles is blocked, the terminal membrane is enlarges

 

Not all transmitter release is by exocytosis

-          carrier mechanisms (pumps)

-          diffusion

-          reversal of transporters that normally mediate transmitter re-uptake

 

Removal of Transmitter from synaptic cleft: terminates synaptic transmission

-          diffusion

-          enzymatic degradation

-          re-uptake (not for peptides)

 

 

OVERVIEW OF SENSORY ANATOMY

 

PRIMARY AFFERENT FIBERS

-          first neuron in sensory pathway

-          comprise the dorsal root

-          cell bodies in the dorsal root ganglia

-          peripheral process (distal to DRG)

specialized sensory receptors at endings

-          central process (proximal to DRG)

enter spinal cord to project to higher levels

or

make synaptic contact with relay neurons

 

DORSAL ROOTS

-          enter spinal cord at all levels from cervical to sacral

-          impart anatomical segmentation to spinal cord representing dermatomes

 

Dermatome = skin innervated by single dorsal root

 

SPINAL CORD

Anterior/Ventral/basal = motor

Posterior/Dorsal/alar = sensory

 

Anterior lateral sulcus ® emergence of ventral roots

Posterior lateral sulcus ® entrance of dorsal roots

 

Dorsal Columns and spinocervical: fine discriminative touch and proprioception

Fasciculus gracilis = sacral thru cervical

Fasciculus cuneatus = upper thoracic and entire cervical

Spinocervical = just lateral to dorsal horn

 

Anterolateral Columns: crude touch, pain, pressure, temperature, tickle and itch

Spinothalamic tract

Spinoreticular tract

Spinotectal tract

 

Gray Matter

All synaptic contact between 1o afferents and relay neurons

All synaptic contact between descending neurons and relay or motor neurons

Ten Lamina

            Dorsal horn

                        Sensory/alar plate deriverative

                        I – marginal layer (2o relay neurons)

                        II – substantia gelatinosa (interneurons)

                        III-VI – nucleus proprius (2o relay neurons & interneurons)

            Ventral horn

                        Motor/basal plate deriverative

                        VIII – interneurons

                        IX – motor neurons

                        VII & X – Clark’s column and intermediolateral cell column

 


 

Primary afferent terminations

Large fibers: medially

            Majority do not make synaptic contact

            Synaptic contacts in nucleus proprius (lamina IV - VI)

Smaller fibers enter more laterally

            Distributed via Lissauer’s tract

            Synaptic contact in lamina I, II, V

 

Somatotropic organization

Dorsal columns = ipsilateral deficit

            Sacral medial

            Cervical lateral

Spinothalamic, spinoreticular, and spinotectal = contralateral deficit

            Sacral lateral

            Cervical medial

 

Relay Points

Dorsal horn of spinal cord

Dorsal column nuclei (gracilis and cuneatus)

Lateral cervical nucleus (spinocervical tract)

Thalamus

Reticular formation

Primary and secondary cortex

 

Function of Relay Nuclei

Give rise to higer order afferent fibers

Integration (modify and tune output)

 

Somatosensory thalamic nuclei

VPL and VPM

            Specific (somatotopic map maintained)

            Lateral division, medial lemniscus and spinothalamic tract from body

            Medial division, trigeminal input from face

Interlaminar nuclei (CL, CM, PF)

            Nonspecific (multiple diffuse profections)

            Direct input from reticular formation

            Behavioral activation and motivation via hypothalamus and limbic system

 

Primary sensory cortex (3,1 & 2)

            Input from VPL and VPM via posterior limb of internal capsule

            Transfers input to 2o sensory cortex and association cortex

 


 

PERIPHERAL MECHANISMS FOR SOMESTHESIS

 

Ab

large    

heavily myelinated

fast      

lowest threshold                                               

well localized: fine discriminative touch and proprioception

ischemia (leg falls asleep)

 

Ad

smaller 

lightly myelinated

intermediate conduction velocity

 

C                                 

smallest

unmyelinated

slow

highest threshold

poorly localized: crude touch, pain, pressure and temperature

anesthetics

 

Labeled Line Code

fibers have specialization: convey only information arising from separate modalities of natural stimuli

 

SENSORY RECEPTORS

Types

specialized afferent nerve endings

separate specialized cells that directly affect the afferent nerve terminal

 

Exteroceptors – sense external environment

Interoceptors – sense internal environment

Proprioceptors – sense position and movement of limbs

 

Function

Transduce natural stimulus energy to neural activity (ion flow produces receptor or generator potential)

           

Cutaneous Exteroceptors

Mechanoreceptors

            Fast adapting

            Slow adapting

Thermoreceptors

            Warm

            Cold

Nocioceptors

            Mechanical

            Thermal

            Polymodal


 

RECEPTOR MODALITY

Receptor type is specialized such that activation always gives rise to a particular sensation

 

Adequate stimulus

Type of stimulus energy for which the receptor has the lowest threshold (most sensitive to)

 

Receptor Potentials

Elicited by adequate stimuli (transduction)

Graded

Local

Trigger action potentials in afferent nerve (neural encoding of intensity and duration)

 

Receptor adaptation

¯ receptor potential and firing frequency of ap’s on afferent nerve with presence of adequate stimulus

causes

            morphological: receptor changes shape

            biophysical: ion channel phosporylation

types

            fast adapting

                        on/off response (dynamic)

                        Ab & Ad

                        signals changes, movements and location

            slow adapting

                        on response followed by sustained response (dynamic and static)

                        Ad and C fibers

                        Signals location and continued presence