GAGE

Problems Involving Moles (No Reactions) Answers

1. How many grams of C_2H_6O are in 0.54 moles of C_2H_6O ?

0.54 mol
$$C_2H_6O \times \frac{46 \text{ g } C_2H_6O}{1 \text{ mol } C_2H_6O} = 25 \text{ g } C_2H_6O$$

How many atoms of hydrogen are required to form 0.350 mol of C₂H₆O? b.

0.350 mol C₂H₆O x
$$\frac{6 \text{ mol H}}{1 \text{ mol C}_2\text{H}_6\text{O}}$$
 x $\frac{6.02 \text{ x } 10^{23} \text{ atoms H}}{1 \text{ mol H}} = 1.26 \text{ x } 10^{24} \text{ atoms H}$

How many grams of carbon are in 86.4 g of C₂H₆O? c.

86.4 g C₂H₆O x
$$\frac{2 (12.0 \text{ g C})}{46.0 \text{ g C}_2\text{H}_6\text{O}} = 45.1 \text{ g C}$$

2. What is the mass of one molecule of calcium carbonate in amu and grams? CaCO₃ $40.1 \text{ amu C} + 12.0 \text{ amu C} + 3 (16.0) \text{ amu O} = 100.1 \text{ amu CaCO}_3$

1 mol CaCO₃ = 100.1 g CaCO₃ =
$$6.02 \times 10^{23}$$
 molecules of CaCO₃ 100.1 g/ 6.02×10^{23} = 1.66×10^{-22} g/molecule

How many grams of ammonium sulfate can be prepared from 7.81×10^{22} atoms 3.

7.81 x
$$10^{22}$$
 atoms H x $\frac{1 \text{ mol H}}{6.02 \text{ x } 10^{23} \text{ atoms H}}$ x $\frac{1 \text{ mole } (\text{NH}_4)_2 \text{SO}_4}{8 \text{ mol H}}$ x $\frac{132.1 \text{ g } (\text{NH}_4)_2 \text{SO}_4}{1 \text{ mol } (\text{NH}_4)_2 \text{SO}_4} = 2.14 \text{ g } (\text{NH}_4)_2 \text{SO}_4$

An analysis of a 2.03 gram sample of chromium oxide yields 1.39 grams of 4. chromium. What is the simplest (empirical) formula for this chromium oxide? 2.03 g chromium oxide - 1.39 g Cr = 0.64 g O

1.39 g Cr x
$$\frac{1 \text{ mol Cr}}{52.0 \text{ g Cr}} = 0.0267 \text{ mol Cr}$$
 $\frac{0.0267}{0.0267} = 1 \text{ x } 2 = 2$
0.64 g O x $\frac{1 \text{ mol O}}{16.0 \text{ g O}} = 0.040 \text{ mol O}$ $\frac{0.040}{0.0267}$ 1.5 x 2 = 3

- 5. How many atoms of oxygen are in a molecule of muscovite (mica), $KAl_3Si_3O_{10}(OH)_2$? 12 atoms O
 - How many molecules of muscovite can be formed from 3.11×10^{20} atoms b. of aluminum?

$$3.11 \times 10^{20}$$
 atoms Al x $\frac{1 \text{ molec musc}}{3 \text{ mol Al}} = 1.04 \times 10^{22} \text{ molec musc}$

How many grams of silicon are in 100.0 grams of muscovite? c.

100.0 g musc x
$$\frac{3(28.1 \text{ g Si})}{398.4 \text{ g musc}} = 21.2 \text{ g Si}$$

d. How many moles of aluminum are in 0.0444 g of muscovite?

0.0444 g musc x
$$\frac{1 \text{ mol musc}}{398.4 \text{ g musc}}$$
 x $\frac{3 \text{ mol Al}}{1 \text{ mol musc}} = 3.34 \text{ x } 10^{-4} \text{ mol Al}$