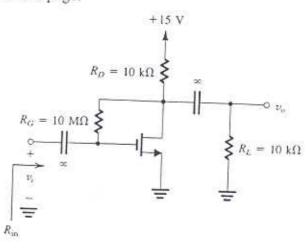

In the below schematic, $I_{REF}=1$ mA, $I_2=0.5$ mA, $I_3=I_4=4$ mA, W/L of $Q_1=6/3$, W/L of $Q_2=3/X$, W/L of $Q_3=Y/2$, W/L of $Q_4=2/100$, and W/L of $Q_5=100/2$. Showing your work, find X, Y, and I_5 .

$$\frac{\frac{3}{x}}{\frac{6}{3}} = \frac{0.5 \, \text{md}}{1 \, \text{md}} \quad / \quad x = 3$$

$$\frac{\frac{y}{2}}{\frac{6}{3}} = \frac{4mA}{1mA}, \quad y = 16$$

$$\frac{100}{2} = \frac{Z}{4mA}$$
, $Z = 10 A ...$

EG 2325

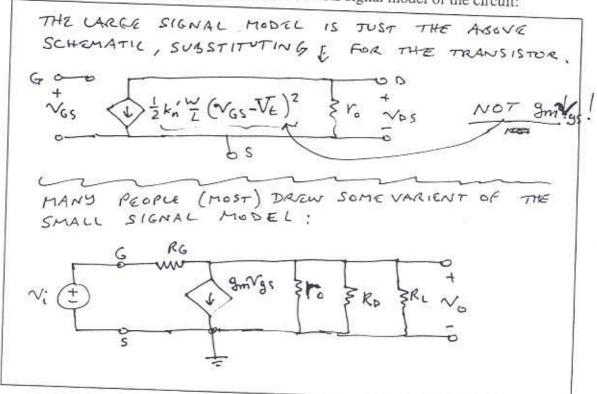

ECE 113B Midterm Exam (February 12, 2004, Professor Kleinfelder)

CLOSED BOOK AND NOTES, NO ELECTRONIC AIDS To receive credit, please show all work and place your answers where requested.

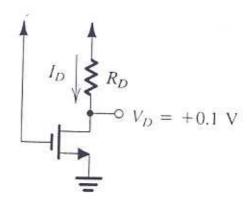
NAME:_	ID:
Signature:	
(5 pts) An Find r _o :	n-channel transistor has $V_A=50V$, $V_1=1$, $V_{GS}=2$, $(W/L)=5$, and $k_n'=100\mu A/V^2$ $ T_D = \frac{1}{2} \mathcal{M}_A C_{ox} \frac{\omega}{L} \left(V_{GS}-V_E \right) $
	= \frac{1}{2} (100 MAIN) (3) (2-1) = 250 MA Vo = VA/ID = 50 V/250 MA = 200 KJZ
(2 pts) Wh	at is the name of the phenomena that causes r _o ?
C HAN	INEL LENGTH MODULATION at would r_o be if V_A were infinite?
C HAN (3 pts) What (3 pts) Wh	INEL LENGTH MODULATION at would r_o be if V_A were infinite?
(3 pts) What (3 pts) What (3 pts) What units)?	INEL LENGTH MODULATION at would r_o be if V_A were infinite? Finite at is the slope of the above transistors I-V curve when in saturation (include

Refer to this figure for this page:

(2 pts) What kind of amplifier is this?


COMMON SOURCE AMPLIFIER

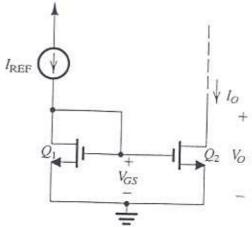
(3 pts) Explain the purpose of the resistor R_G:


PRIMARY: BIASES GATE VOLTAGE SUCH THAT Q IS IN SATURATION

SECONDARY: FEEDBACK STABILIZES ID

(10 pts) Draw and completely annotate the LARGE signal model of the circuit:

Let the following NMOS transistor have a V_t of 1V, $\mu_{\rm B}C_{\rm ox}$ =200 μ A/V², λ =0, L=1 μ m, and W=10 μ m. Set V_{dd}=10V.


1.79 mA

(5 pt) Find R_D:

$$E = IR$$
 $R = \frac{E}{I} = 5.53 \text{ k} \Omega$

5,530 JZ (5.53 K_Z) ANSWER

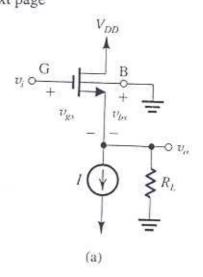
In the following figure, let $I_{REF}=1$ mA, $L_2=L_1$, $W_2=2W_1$, $V_{GS}=2V$, $V_0=4V$, $V_{A2}=100V$

CHANNEL -LENGTH

(10 pts) Find Io:

(SATURATION
$$I_0 = I_{b2} = \frac{1}{2} \mu_n Cox \frac{\omega}{L} (V_{GS} - V_E)^2 (1 + \lambda V_{GS})$$
)

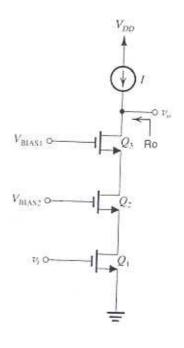
No
$$\lambda$$
: $\frac{I_o}{I_{REF}} = \frac{(\omega/L)_2}{(\omega/L)_1}$, $I_o = \frac{(2)}{(1)}(1_{mA}) = 2_{mA}$


VAI DOES NOT MATTER BECAUSE WE ARE GIVEN VGS!


CH. LEW. MOD. WILL CHANGE T_0 TO THE DEGREE THAT V_0 DIFFERS FROM V_{GS} (VDS OF Q_1), SO

ANSWER $T_0' = T_0 \left(1 + \frac{V_0 - V_{GS}}{V_{A2}}\right) = 2mA \left(1 + \frac{4-2}{100}\right) = 2.04 mA$

DIFFERS FROM VGS (VDS OF Q1), SO


ANSWER
$$I_0' = I_0 \left(1 + \frac{V_0 - V_{GS}}{100}\right) = 2mA \left(1 + \frac{4 - 2}{100}\right)$$

(10 pts) Draw and annotate the complete SMALL signal model of this circuit:

(10 pts) Leave out any body effect, and derive the formula for the voltage gain of the entire circuit (including R_L) in terms of g_m, etc. Again, do not include the body effect:

(5 pts) If all transistors in the above circuit have identical r_o and g_m , what is the output resistance Ro at the output of this circuit?

$$R_0 = (g_{m3}r_{03})(g_{m2}r_{02})(r_{01})$$

= $g_m^2 r_0^3 = A^2 r_0$
 $= g_m^2 r_0^3 = A^2 r_0$

Please report any problems you found in this exam below.

Thank you.

ANSWER