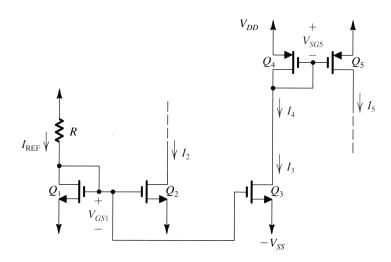
ECE 113B Midterm #2 (March 3, 2003, Professor Kleinfelder)

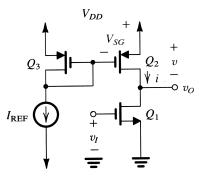
CLOSED BOOK AND NOTES, NO ELECTRONIC AIDS

To receive credit, please show all work and place your answers where requested.

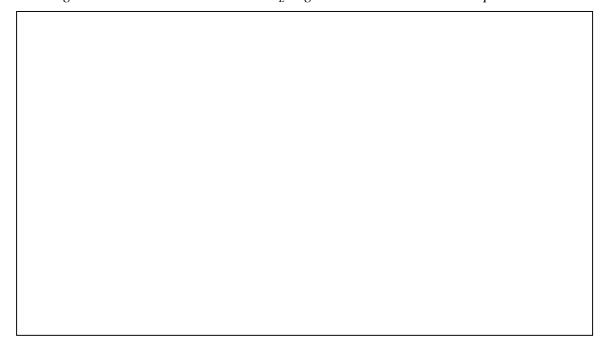

NAME:	ID:
Signature:	Seat/Row:
i _D A	B Slope D
E 0	v_{DS}
The above is from a MOSFET	νο
(2 pts) What is region A called?	
(2 pts) Give the formula for the i _D in region A:	
(2 pts) What is region B called?	
(2 pts) Give the formula for the i _D in region B:	
(2 pts) What is V_{gs} at the transition to line C?	
(2 pts) What is point E called?	
(2 pts) Give a formula for point F:	

(2 pts) Give a formula for slope D:_____

(2 pts) What is the phenomena that causes slope D called?



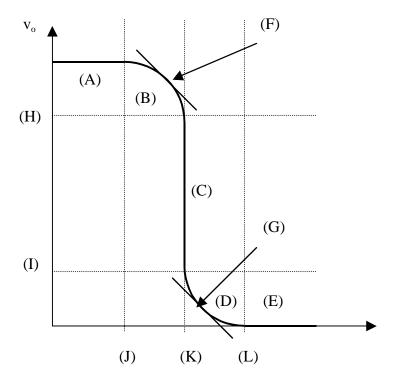
(2 pts) What is happening to the channel along the dotted line between region A and B?



In the above schematic, $I_{REF}=1$ mA, $I_2=0.5$ mA, $I_3=I_4=4$ mA, W/L of $Q_1=3/6$, W/L of $Q_2=2/X$, W/L of $Q_3=Y/3$, W/L of $Q_4=100/2$, and W/L of $Q_5=2/100$. Showing your work, find X, Y, and I_5 .

(5pts) X=______, (5pts) Y=______, (5pts) $I_5=$ _____

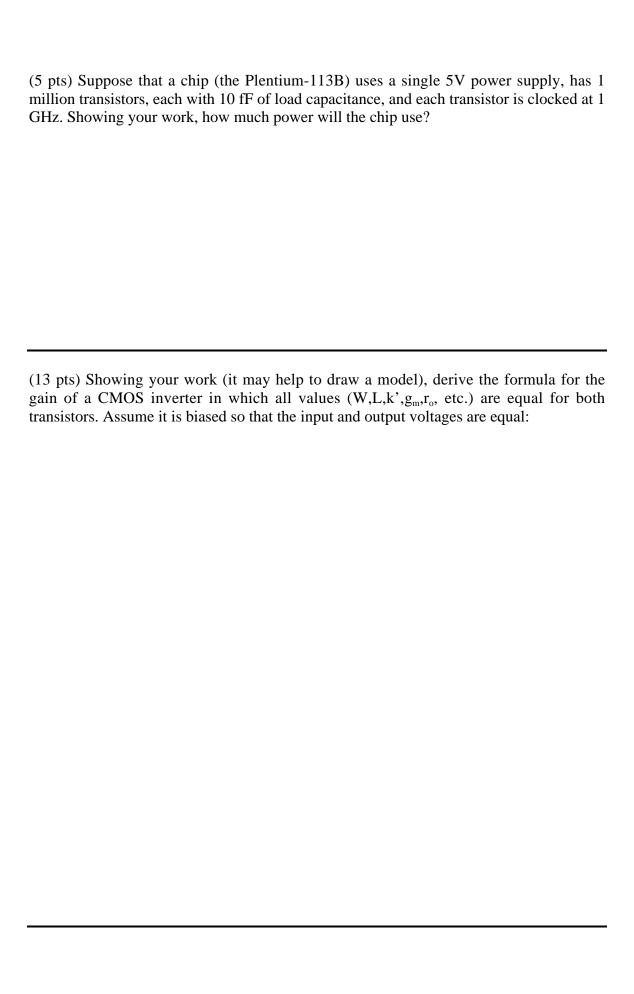
(10 pts) Draw and completely annotate a small-signal model of the above amplifier as would be required to calculate the gain, including the model for the body effect, and assuming that there is a load resistance R_L to ground connected to the output:



(5 pts) Assume that, for all devices, I_{ref} =200 μ A, W=10 μ m, L=1 μ m, V_t=1V, $\mu_n C_{ox}$ =25 μ A/V², k'_n/k'_p=2.5, and that V_A=50. Showing your work, calculate the output resistance of the load transistor:

(5 pts) What is the formula for the transconductance of the input transistor that one would use if I_{REF} were an important variable?

(5 pts) Find the formula of the gain of the amplifier assuming that there is a load resistance R_L to ground (but ignore the body effect – in fact, there is none):


The following shows the output transfer characteristic of a CMOS inverter, where the transistors are matched. $|V_t|$ for both transistors is 1V and Vdd=5V. Assume that the regions and lines shown are appropriate for the transitions and/or areas of interest as given in the book and lectures.

Use this graph for the questions on the next page.

(1 pt each) What mode of operation is each transistor in for each region: **n-channel p-channel**

Region (A)	
Region (B)	
Region (C)	
Region (D)	
Region (E)	
(2 pts each) Find the following voltages:	
Voltage (H):	
Voltage (I):	
Voltage (J):	
Voltage (K):	
Voltage (L):	
(2 pts) What are points (F) and (G) defined as?	
Answer:	

