Mathematics 5
ANSWERS Review worksheet
5
180° = pi radians
1 = pi
/ 180
131 = 131pi / 180
b) 17pi / 3 to degrees.
180° = pi radians
(17 / 3)(180) = (17
/ 3)(pi)
1020 = 17pi / 3
c) 1.42 radians to degrees.
180° = pi radians
180 / pi = 1
(1.42)(180 / pi ) = (1.42)(1)
(142 / 100 )(180
/ pi ) = 1.42
1278 / 5 pi = 1.42
the six trig ratios can be expressed in terms
of x, y, and r. we know x and y, we need to find r.
Let A be the angle.
r2 = x2 + y2
r2 = (-6)2
+ (2)2
r2 = 36 + 4
r2 = 40
r = SQRT(40)
4 = 2SQRT(10)
r = 6.32
sinA = y / r
sin A = 2 / 2SQRT(10)
sin A = 1 / SQRT(10)
sin A = SQRT(10) / 10
cosA = x / r
cosA = -6 / 2SQRT(10)
cosA = -3SQRT(10) / 10
tanA = y / x
tanA = 2 / -6
tanA = -1 / 3
cscA = 1 / sin A
cscA = SQRT(10)
secA = 1 / cosA
secA = -SQRT(10) / 3
cotA = 1 / tanA
cotA = -3
Draw a diagram. Then check here to see if your diagram is accurate.
From the diagram we have two shapes to calculate, a triangle and a sector.
For the triangle,
cos A = a / h
cosA = 15 / 20
A = 0.723 radians.
Area (triangle) = absinC / 2
Area = (15)(20)sin(0.723) / 2
Area = 99.2
Since the angle in the triangle is 0.723, the angle of the sector is pi - 0.723 = 2.419
Area (sector) = r2 theta
/ 2
Area = (20)2 (2.419)
/ 2
Area = 483.8
Total Area = Area (triangle) + Area (sector)
= 99.2 + 483.8
= 583 m2