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Abstract

This article generalizes the results shown in De Grauwe, Dewachter, and Embrechts (1993) in a more
sophisticated framework. In their model, the speculative dynamics resulting from the interaction
between chartists and fundamentalists are incorporated into a Dornbusch-style model to generate
a chaotic nominal exchange rate. Here the model of Obstfeld and Rogoff (1995, 1996) replaces
the Dornbusch model, and chaotic solutions are still shown to be possible for sensible parameter
values.

Introduction

A major advantage of exchange rate models that are able to generate chaotic
solutions is their ability to replicate the random-like pattern observed in actual
exchange rates. De Grauwe and Dewachter (1992) and De Grauwe, Dewachter,
and Embrechts (1993, Chapter 5) provide examples of these models, where the
traditional sticky price model of Dornbusch (1976) is extended to incorporate
speculative dynamics and to give rise to an arbitrarily large number of equilibria,
including chaotic ones.

An apparently successful attempt to update the Dornbusch model with mi-
crofoundations is the “new open economy macroeconomics’’ model of Obstfeld
and Rogoff (1995, 1996, Chapter 10). Their “redux’’ model can rigorously jus-
tify the Keynesian assumption of the Dornbusch model that output is demand
determined in the short run if prices are fixed.

The model presented here blends the speculative-dynamics side of the De
Grauwe, Dewachter, and Embrechts model with the redux model along with a
consideration of foreign exchange intervention. In particular, domestic produc-
ers are assumed to speculate in foreign exchange at the previous time period.
They no longer have rational expectations as in the original redux model. Rather,
they behave either like chartists (using backward-looking forecast rules) or fun-
damentalists (making forecasts by paying attention to the long-run purchasing-
power-parity exchange rate implied by the fundamentals of the model).
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The article is organized as follows. Section 1 presents the model and its
solutions, Section 2 discusses results, and Section 3 concludes. Formal tests
for chaos are relegated to an appendix.

1. The model

The assumption of Obstfeld and Rogoff (1995, 1996) that domestic agents have
perfect foresight regarding the nominal exchange rate is relaxed in this model.
Here, forecasts are assumed to be “near rational,’’ in the sense that they may
be either backward looking—using chart information—or based on the funda-
mentals of the model. The introduction of such speculative dynamics through
chartists and fundamentalists means that efficiency in the foreign exchange
market is not assumed from the start. Tastes, technology, and speculative dy-
namics are specified to derive individual decision makers’ first-order optimality
conditions. The model is then solved for the nominal exchange rate in the short
run, where goods prices are rigid in local currency terms and output is demand
determined. Central bank intervention is also introduced. Eventually, the re-
sulting nonlinear nominal exchange rate equation is used to perform numerical
simulations for alternative parameter values.

1.1. Basic features

It is assumed that there are two countries, populated by a large number (con-
tinuum) of individual monopolistic producers z ∈ [0, 1], each of whom produces
a single differentiated perishable good (also indexed by z) using its own labor
as input, but consumes all goods produced in the world. Thus, there is no capi-
tal or investment, although this is not an endowment economy because labor
supply is elastic.

Agents live indefinitely and maximize an intertemporal utility function; money
conveys utility and acts as a store of wealth. Time period t output of good
z, yt (z), is endogenous and is chosen in a manner that depends on the marginal
revenue of higher production, the marginal utility of consumption, and the disu-
tility of effort. Home producers lie on the interval [0, n], and the remaining (n, 1]
producers are foreign.

The foreign exchange market is assumed not to be efficient from the start.
Thus, the perfect-foresight setting of the original redux model is replaced with
the speculative dynamics described in Section 1.7 below. Home producers are
assumed to speculate in foreign currency at the previous time period. At the
starting period, they are assumed to borrow the amount of domestic money
needed to buy foreign money before producing. Accordingly, they make subse-
quent production decisions after their positions in foreign exchange have been
taken. Home producers in the interval [0, Tt ] make forecasts of the nominal ex-
change rate based on technical analysis (charts); the rest (Tt , n] make forecasts
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based on the fundamentals of the model. The weight of home charting Tt can
change as the nominal exchange rate deviates from equilibrium, as will be ex-
plained in Section 1.7. (This method of introducing two types of speculator in
the redux model is formally similar to the procedure adopted by Fender and Yip
(2000) when modeling the introduction of a tariff in the model.)

1.2. Preferences

Individuals worldwide have identical preferences over a consumption index of
all the individual goods produced, real money balances, and effort expended
in producing output. Since all agents within a country have symmetrical pref-
erences and constraints, the maximization problems of national consumer–
producers can be analyzed by the intertemporal utility function of a represen-
tative home agent Ut given by

Ut =
∞∑

s=t

βs−t

[
σ

σ − 1
C

σ−1
σ

s + δ

δ − 1

(
Ms

Ps

)δ−1
δ

− ys(z)2

2

]
, (1)

where β ∈ (0, 1) is a fixed preference parameter that measures the individual’s
impatience to consume; σ ∈ (0,∞) stands for the elasticity of intertemporal sub-
stitution; and δ ∈ (0,∞) will turn out to be the consumption elasticity of money
demand, for which sensible values lie on the interval δ ∈ (0, 1).

In (1), the representative home consumer–producer obtains utility U from the
present discounted value of a function that depends positively on consumption
and real money balances and negatively on work effort, which is positively
related to output of good z. Variable C is a home real-consumption index as
defined below; M represents a representative home agent’s holdings of nominal
money balances; and P is a home consumer-price index, also defined below.
A foreign representative individual’s utility function is analogous to (1).

It might be noted that while home money is held only by home agents, foreign
money is held by foreign (as in Obstfeld–Rogoff) and home agents in this model.
Despite this situation, foreign money does not enter the home utility function
(1). Instead, excess returns from holding foreign money will be embodied in the
home individual’s budget constraint (16) in Section 1.4.

Using c(z) to denote the home individual’s consumption of good z, the home
real-consumption index C is defined as a generalization of a two-good constant-
elasticity-of-substitution (CES) function that takes the form

C =
[∫ 1

0
c(z)

θ−1
θ dz

] θ
θ−1

, (2)

where θ ∈ (1,∞) is the elasticity of substitution between different goods. It will
also turn out to be the price elasticity of demand faced by each monopolist, as
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will be seen in Section 1.5. Parameter θ may also be thought of as the degree of
competition in the economy; if θ →∞, perfect competition holds, and if θ → 1,
pure monopoly holds. The requirement θ > 1 is to ensure an interior equilibrium
with a positive level of output.

Each of the home real consumption indexes for chartists and fundamentalists
is defined analogously to (2). The foreign real-consumption index C∗ is defined
similarly, i.e.,

C∗ =
[∫ 1

0
c∗(z)

θ−1
θ dz

] θ
θ−1

, (3)

where c∗(z) is the foreign individual’s consumption of good z. Throughout in this
article, asterisks denote foreign variables.

The home consumer-price index P corresponding to (2) is given by

P =
[∫ 1

0
p(z)1−θdz

] 1
1−θ

, (4)

where p(z) is the home-currency price of good z. Index P is defined as the mini-
mal expenditure of domestic money needed to purchase a unit of C. Formally,
P solves the problem of minimizing the nominal budget constraint

Z =
∫ 1

0
p(z)c(z) dz (5)

(where Z is any fixed total nominal expenditure on goods) subject to C = 1, as
defined in (2). Equation (4) is an extension of the price index for the two-good
CES case.

The foreign consumer-price index P∗ corresponding to (3) is given analo-
gously by

P∗ =
[∫ 1

0
p∗(z)1−θdz

] 1
1−θ

, (6)

where p∗(z) is the foreign-currency price of good z.

1.3. Purchasing power parity

It is assumed that there are no impediments or costs to trade between the two
countries, so the law of one price holds for each individual good z, i.e.,

p(z) = Ep∗(z), (7)
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where E is the nominal exchange rate, defined as the home-currency price of
foreign currency.

Since goods 0 to n are made at home and the rest are produced abroad,
consideration of (7) allows us to rewrite both the home consumer-price index
(4) as

P =
[∫ n

0
p(z)1−θdz+

∫ 1

n
[Ep∗(z)]1−θdz

] 1
1−θ

(8)

and the foreign consumer-price index (6) as

P∗ =
[∫ n

0

(
p(z)

E

)1−θ
dz+

∫ 1

n
p∗(z)1−θdz

] 1
1−θ

. (9)

Using pT (z) to denote the price of good zset by home producers who behaved
as chartists at the previous time period, and pF (z) to stand for the price of good
z set by home producers who behaved as fundamentalists, (8) can also be
rewritten as

P =
[∫ Tt

0
pT (z)

1−θdz+
∫ n

Tt

pF (z)
1−θdz+

∫ 1

n
[Ep∗(z)]1−θdz

] 1
1−θ

. (10)

Similarly, (9) can be rewritten as

P∗ =
[∫ Tt

0

(
pT (z)

E

)1−θ
dz+

∫ n

Tt

(
pF (z)

E

)1−θ
dz+

∫ 1

n
p∗(z)1−θdz

] 1
1−θ

. (11)

Adopting a rationale similar to the one presented by Fender and Yip (2000),
all home producers who act as chartists (fundamentalists) are assumed to set
the same price. This allows us to rewrite (10) and (11) as

P = [Tt p1−θ
T + (n− Tt )p

1−θ
F + (1− n)(Ep∗)1−θ

] 1
1−θ (12)

and

P∗ =
[

Tt

(
pT

E

)1−θ
+ (n− Tt )

(
pF

E

)1−θ
+ (1− n)p∗1−θ

] 1
1−θ

. (13)

Comparing (12) and (13), it turns out that home and foreign consumer-price
indexes are related by purchasing power parity (PPP):

P = E P∗. (14)
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The law of one price (7) along with PPP (14) also implies that the real price of
any good z is the same at home and abroad, i.e.,

p(z)

P
= p∗(z)

P∗
. (15)

This fact will be used in Section 1.5 when we derive the world demand for
good z.

1.4. Individual budget constraint

There is an integrated world capital market in which both countries can borrow
and lend. Here, an internationally traded asset is a riskless real bond denom-
inated in the home real-consumption index. Since home consumer–producers
also hold foreign currency for speculative purposes, returns or losses of such
decisions at the former time period are assumed to impact the individual budget
constraint at the current period. The period budget constraint for a representa-
tive home individual can then be written in nominal terms as

Pt Bt+1+ Mt = Pt (1+ rt )Bt + Mt−1+ pt (z)yt (z)− PtCt + (1+ Rt )M
∗
t−1, (16)

where Bt and Bt+1 denote the stock of bonds held by a home resident at time
periods t and t + 1 respectively; Mt−1 is a home agent’s holdings of nominal
money balances at t − 1; rt denotes the consumption-based real interest rate
earned on bonds between dates t − 1 and t; M∗t−1 is a home agent’s holdings
of foreign currency at t − 1; and Rt stands for returns (or losses for negative
values) at date t resulting from holding the foreign currency at t − 1.

1.5. Demand

Consumers seek to allocate any given amount of money they spend on cur-
rent consumption between different goods so as to maximize the consump-
tion index. If we maximize the home real consumption index (2) subject to the
nominal budget constraint (5), it turns out that for any two goods z and z′,
c(z′) = c(z)[ p(z)/p(z′)]θ is valid. Inserting this expression into (5) and using (4)
yields c(z) = [ p(z)/P]−θ (Z/P). Since P is the minimum money cost of one unit
of C, one obtains the representative individual’s demand for good z in the home
country as given by

c(z) =
[

p(z)

P

]−θ
C. (17)
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By a similar rationale, the representative foreign individual’s demand for good
z is given by

c∗(z) =
[

p∗(z)
P∗

]−θ
C∗. (18)

For the home country, (17) can be further rewritten as

c(z) =
[

pT (z)

P

]−θ
C (19)

for z ∈ [0, Tt ], and

c(z) =
[

pF (z)

P

]−θ
C (20)

for z ∈ (Tt , n].
Taking a population-weighted average of home and foreign demands—i.e.,

nc(z)+ (1− n)c∗(z)—after using (17), (18), and (15), one obtains the world de-
mand for good z, yd(z), in the following CES form:

yd(z) =
[

p(z)

P

]−θ
CW, (21)

where CW, the world consumption, is given by

CW ≡ nC+ (1− n)C∗. (22)

Thus, due to the fact that each individual producer has a degree of monopoly
power, it turns out that each country faces a downward-sloping demand curve
for its output in the aggregate.

1.6. Foreign-exchange market inefficiency

In the bonds market, producers have perfect foresight. Thus, the real interest
rate links the nominal interest rate to inflation through Fisher parity identity
(e.g., Obsfeld and Rogoff, 1996, pp. 516–517), i.e., the nominal interest rate for
home-currency loans between dates t and t + 1, i t+1, is defined by

1+ i t+1 ≡ Pt+1

Pt
(1+ rt+1), (23)

where rt+1 is the consumption-based real interest rate earned on bonds between
dates t and t + 1, and Pt+1/Pt gives the domestic inflation. Since the foreign-
currency nominal interest rate has a definition similar to (23), the so-called Fisher
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hypothesis postulates that real rates of interest are equalized between the two
countries.

In the foreign exchange market, however, producers do not have rational
expectations. They may make forecasts in a manner that is internally consis-
tent with the fundamentals of the model, or they may use charts to arrive at
backward-looking expectations. In the first case, as will be seen in Section 1.7,
they pay attention in particular to the equilibrium–PPP value. In the second case,
they use a different information set and look at past exchange rates. So when
producers forecast the nominal exchange rate by paying attention to PPP, they
behave as fundamentalists. When they make backward-looking expectations,
they behave as chartists.

Under such an assumption of heterogenous trading, there is no reason for
efficiency in the foreign exchange market to take place from the start. In the
original redux model, uncovered interest rate parity (UIP) holds (e.g., Obstfeld
and Rogoff, 1995, p. 630), which means that the foreign exchange market is
assumed to be efficient. Here the possibility of nonzero excess returns coming
from speculation forces the replacement of UIP with

Ee
t+1

Et
= 1+ i t+1

1+ i ∗t+1

(1+ Rt ), (24)

where i ∗t+1 is the nominal interest rate for foreign-currency loans between dates
t and t+1, and Ee

t+1 stands for the forecast made at time period t for the nominal
exchange rate at t + 1, without making any distinction whether such forecasts
are made looking at PPP or using charts (this will be done in Section 1.7).
Equation (24) is familiar from presentations in which departures from UIP are
assumed, and Rt is viewed as giving excess returns from speculation.

1.7. Speculative dynamics

Nominal exchange rate expectations in the home country are now split between
two components: the expectations based on charts, T Ee

t+1, and the expecta-
tions based on the fundamentals of the model, F Ee

t+1, i.e.,

(
Ee

t+1

Et−1

)n

=
(

T Ee
t+1

Et−1

)Tt
(

F Ee
t+1

Et−1

)n−Tt

, (25)

where Et−1 is the nominal exchange rate at time period t − 1. It might be noted
that Et−1 appears rather than Et in (25) (and also in (26), (30), and (31) below)
because of the assumption that producer–speculators take market positions at
the former time period based on the forecasts they have made for the current
period.
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The expectation rule for the forecasts based on charts is defined by

T Ee
t+1

Et−1
=
[(

Et−1

Et−2

)(
Et−3

Et−2

)]ν
, (26)

where Et−2 and Et−3 are the nominal exchange rates at time periods t − 2 and
t − 3, respectively, and parameter ν ∈ (0,∞) stands for the degree of past ex-
trapolation used by technical analysis in the domestic country. Since ν > 0,
the greater ν, the more the past will be extrapolated into the future in nominal
exchange rate forecasts, and home chartists will expect the nominal exchange
rate at time period t + 1 to fall short of the nominal exchange rate prevailing
at t − 1.

The rationale for (26) runs as follows. Producer–speculators expect an in-
crease in the nominal exchange rate whenever a short-run moving average
of past nominal exchange rates ES crosses a long-run moving average of past
nominal exchange-rates EL from below. In such an event, producer–speculators
give a buy order for the foreign currency. By contrast, they expect a decline of
the nominal exchange rate whenever ES crosses EL from above. In the latter
case, speculators order a selling of the foreign currency. Figure 1 illustrates this.

Thus, if ES > EL , the buy signal will imply Rt > 0 for the next time period; if
ES < EL , the sell signal will lead to Rt < 0 on the next date. This outcome might
be postulated as

T Ee
t+1

Et−1
=
(

ES

EL

)2ν

. (27)

Figure 1. The chart used in the model forecasts. Speculators expect an increase in the nominal
exchange rate whenever a short-run moving average of past exchange rates ES crosses a long-run
moving average of past exchange rates EL from below; in such an event, they give a buy order for
the foreign currency. By contrast, they expect a decline of the nominal exchange rate whenever ES

crosses EL from above; in the latter case, speculators order a selling of the foreign currency.
Source: De Grauwe, Dewachter, and Embrechts (1993, p. 73), with minor modifications.
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Equation (27) states that since ν >0, whenever ES> EL (ES< EL), home chartists
expect an increase (decrease) of the nominal exchange rate relative to the most
recently observed value Et−1.

The short-run moving average ES is, by assumption, based on a one-period
change, i.e.,

ES = Et−1

Et−2
, (28)

and the long-run moving average EL is based on a two-period change, i.e.,

EL =
(

Et−1

Et−2

) 1
2
(

Et−2

Et−3

) 1
2

. (29)

Rule (26) can be obtained by plugging (28) and (29) into (27). A possible microe-
conomic foundation for such a chartist behavior is discussed by De Grauwe
(1996, pp. 181–185).

While making forecasts based on the fundamentals of the model, producer–
speculators are assumed to use the following rule:

F Ee
t+1

Et−1
=
(

EPPP
t−1

Et−1

)λ
, (30)

where EPPP
t−1 represents the equilibrium-PPP exchange rate at time period t − 1,

and parameter λ∈ (0,∞) stands for the expected speed of return of the current
(at date t − 1) nominal exchange rate toward its equilibrium-PPP value.

According to (30), whenever producers who behave as fundamentalists ob-
serve a market rate above (below) the PPP value, they will expect it to decline
(increase) in the future. Since λ > 0, the greater is λ, the faster fundamentalists
will expect the nominal exchange rate to increase (fall) toward its equilibrium-
PPP value when Et−1 < EPPP

t−1(Et−1 > EPPP
t−1). Values of λ greater than one could

mean that fundamentalists expect some sort of future overshooting of the nom-
inal exchange rate. Values of λ greater than one could thus be interpreted as
meaning that fundamentalists expect convergence toward PPP after a transi-
tional period of nominal exchange rate volatility.

The weight of charting in the home country Tt ∈ (0, n) is endogenized by

Tt = n

1+ ι(Et−1− EPPP
t−1

)2 , (31)

where parameter ι ∈ (0,∞) stands for the speed at which forecasts based on
charts in the domestic country switch to forecasts based on fundamentals. The
higher ι is, the faster charting will decrease.

In (31), the technical analysis used by producers who behave as chartists is
made dependent on the size of deviation of the current (at date t − 1) nominal
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exchange rate from its equilibrium (fundamental)-PPP value. Whenever the de-
viation from PPP increases, the expectations based on charts among domestic
speculators will be reduced, and whenever the deviation from PPP tends to
be eliminated, charting will grow in importance among domestic speculators.
In accordance with (31), LeBaron (1994, p. 400) points out that predictability
appears to be higher during periods of lower volatility, a phenomenon used
by chartists to achieve some small out-of-sample improvements in forecasts.
Equations analogous to (25), (26), (30), and (31) are presented by De Grauwe,
Dewachter, and Embrechts (1993).

Before we proceed to derive first-order conditions, it is appropriate to solve
first for Ee

t+1, because this model is recursive. Insertion of (26), (30), and (31) into
(25) produces, after assuming that the equilibrium-PPP exchange rate equals
one,

Ee
t+1 = E f1

t−1E f2
t−2E f3

t−3, (32)

where

f1 ≡ 1+ ν + ι(1− λ)(Et−1− 1)2

1+ ι(Et−1− 1)2
, (33)

f2 ≡ −2ν

1+ ι(Et−1− 1)2
, (34)

and

f3 ≡ ν

1+ ι(Et−1− 1)2
. (35)

Equation (32) thus shows that nominal exchange rate forecasts depend on past
nominal exchange rates in a nonlinear way. This completes the description of
the model.

1.8. First-order conditions

We can now derive the first-order optimality conditions for the representative
home consumer–producer. Since yd

t (z) = yt (z) in equilibrium, the world demand
function (21) implies pt (z)yt (z)= Pt yt (z)(θ−1)/θ (CW

t )
1/θ . Substituting this in the pe-

riod budget constraint (16) yields an expression for C, which when inserted into
the utility function (1) produces the unconstrained maximization problem of the
home individual.

The first-order conditions with respect to Bt+1, Mt , and yt (z) are, respectively,

C
1
σ

t+1 = β(1+ rt+1)C
1
σ

t , (36)

Mt

Pt
=
[
C

1
σ

t

(
1+ i t+1

i t+1

)]δ
, (37)
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and

y
θ+1
θ

t = θ − 1

θ
C
− 1
σ

t

(
CW

t

) 1
θ . (38)

Equation (36) is the standard first-order consumption Euler equation. Equa-
tion (37) is familiar from money-in-the-utility-function models and was obtained
using additionally (23) and (36). Finally, (38), which was obtained considering
CW as given, is the labor–leisure trade-off condition. First-order conditions
(36)–(38), along with the period budget constraint (16) and a no-bubble transver-
sality condition (which can be derived by iterating (16)), fully characterize equi-
librium. Analogous equations hold for the foreign country.

Owing to monopoly pricing and endogenous output, this type of model does
not yield simple closed-form solutions for general paths of exogenous variables.
Rather than using numerical simulations to study the effects of exogenous
shocks, Obstfeld and Rogoff adopt the following strategy: (1) they define the
steady state as a situation in which all prices are fully flexible and all exogenous
variables—including the nominal money supply—are constant; (2) even to this
steady state there is no simple closed-form solution, so the authors pick the
special case where there are no initial net foreign assets; (3) finally, they lin-
earize the system around this particular well-defined steady state. Thus, only
natural-logarithm approximations to the model solutions are studied. Here, ana-
lysis adopts steps 1 and 2 above but discards step 3. Numerical simulations
are used instead. A reason for such a procedure is that a linear version of the
model would wash out from the start the possibility of chaos, which is the focus
of analysis here.

The entire particular strategy adopted in this article can be described as
follows. The first-order conditions are rewritten to provide a single expression
for the nominal exchange rate in which other endogenous variables are present.
The extra endogenous variables then receive further rationale following steps 1
and 2 of Obstfeld and Rogoff, as described above.

Using (23) and (24), first-order conditions (36)–(38) can be reduced to a single
expression as follows. First, we insert (24) into (23) and then substitute in (36);
second, we plug (24) into (37); third, we substitute the first resulting expression
in both the second one and (38); and finally, we combine the two remaining
expressions. This produces

Et =
(1+ i ∗t+1)E

e
t+1

1+ Rt + θ−1
θ

(1+i ∗t+1)E
e
t+1

Et

( Pt
Mt

) 1
δ
(
CW

t

) 1
θ y
− θ+1

θ

t

. (39)

Obviously, (39) is not an equation describing the behavior of the nominal
exchange rate because, apart from Ee

t+1, the price index Pt and output yt are
not exogenous (remember, too, that Rt is given by the speculative dynamics of
the previous time period).
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1.9. Closing the model

To obtain expressions for Pt and yt , the model is closed for the short run, when
prices are fixed in local currency terms and output is demand determined.
Following Obstfeld and Rogoff, period 0 is considered to be the initial steady
state, in which prices are flexible and output is determined independently of
monetary factors; period 1 is the short run, where output is determined entirely
by the demand equation (21); and the final steady state is period 2.

Since an assumption of symmetry holds, all producers in a country determine
the same price and output in equilibrium. However, this does not mean that
p̄t (z)/P̄t = 1 in a steady state (steady states are marked by overbars). Since
countries may have different levels of wealth, their marginal utilities of leisure
differ. Even though individuals in the two countries face the same relative price
for any good z (equation (15)), the relative price of home and foreign goods—the
terms of trade—can vary. Even the steady-state terms of trade vary as relative
wealth changes, because the marginal benefit from production is declining in
wealth. Thus, in general, there is no simple closed-form solution for this model
even in the steady state.

However, a solution does exist when initial net foreign assets are zero and the
countries have the same per capita outputs and real money holdings. Given that
global net foreign assets must be zero—i.e., nB+ (1− n)B∗ = 0—one particular
steady state is defined by B̄0= B̄∗0 = 0. Such a bonds market-clearing condi-
tion, along with a money market-clearing condition, allows one to derive a
global goods market-clearing condition. Equilibrium is completely symmetri-
cal across the two countries in the special case where initial foreign assets
are zero. In the globally symmetrical equilibrium, any two goods produced
anywhere in the world have the same price when prices are measured in the
same currency. This situation implies that p̄0/P̄0= p̄∗0/P̄∗0 = 1, where 0 subscripts
on barred variables denote the initial preshock symmetrical steady state in
which B̄0= B̄∗0 = 0. This is the rationale given by Obstfeld and Rogoff (1996,
p. 668).

By denoting a variable without a time subscript as a short-run (period 1)
variable, it might be noted that p(z) = P = p̄0(z) = P̄0 is implied in the short run
(period 1) because prices continue to be the same as in period 0. In the short
run, the world demand (21) thus becomes

yd(z) = y(z) = CW. (40)

As in Da Silva (2000), central bank intervention can be in turn introduced by
replacing Mt using the following feedback policy rule:

Mt

MT
t
=
(

Et

ET
t

)φ
(41)
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where MT
t and ET

t are domestic central-bank targets at time period t for the
nominal money supply and the nominal exchange rate respectively; and φ is
a policy parameter that is zero for free float and approaches either plus or
minus infinity for a fixed exchange rate. “Leaning-against-the-wind’’ interven-
tion is represented by φ ∈ (−∞, 0), whereas “leaning into the wind’’ is given
by φ ∈ (0,∞). Although a feedback rule similar to (41) could apply to the for-
eign country, foreign exchange intervention is here assumed (for simplicity) to
take place in the home country only, in order to counteract domestic chartist
activity.

When (40) and (41) are substituted in (39), the result is that

Et =
(1+ i ∗t+1)E

e
t+1

1+ Rt + θ−1
θ

(1+i ∗t+1)E
e
t+1

Et

( ET
t

Et

)φ
δ
(

P
MT

t

)1
δ 1

CW

. (42)

Apart from Ee
t+1, all variables explaining Et in (42) are now exogenous. Without

loss of generality, every exogenous variable is assumed to be constant and
normalized to unity, i.e.,

MT
t = P = ET

t = CW = Rt = 1+ i ∗t+1 = 1. (43)

Insertion of (32) and (43) into (42) then gives the final equation for the nominal
exchange rate:

2Et + θ − 1

θ
E
− φ

δ

t E f1
t−1E f2

t−2E f3
t−3− E f1

t−1E f2
t−2E f3

t−3 = 0. (44)

Equation (44) is a nonlinear difference equation for which an analytical so-
lution is not available. To solve it numerically, initial conditions—i.e., values for
Et−1, Et−2, and Et−3—are required. Even given such values, (44) has as many so-
lutions as there are parameter combinations. To perform numerical simulations,
the nominal exchange rate is assumed to be at its equilibrium-PPP value at the
starting point, i.e., Et−3= EPPP

t−1 = 1. In the two subsequent periods, small devia-
tions from this equilibrium are allowed. In particular, Et−2= 0.99 and Et−1= 1.02
are assumed. This set of initial conditions suffice to generate very complex
dynamics in this model.

Since the endogenous variable (Et ) cannot be isolated on the left-hand side
of (44), we need to employ Newton’s algorithm to solve the equation. Newton’s
algorithm calculates the value of the nominal exchange rate at the next step
of iteration as given by its current value minus the ratio between the function
given by the left-hand side of (44) and its derivative. To carry out simulations
using Newton’s algorithm, there is also a technical need for an extra guess as
to the fourth value of the nominal exchange-rate time series. This fourth value
is assumed to be 0.99.
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Table 1. Solutions to the model in the (ν, λ) space: degree of past extrapolation
in charting (ν) versus expected speed of return of the current nominal exchange
rate toward its equilibrium-PPP value (λ).

ν λ 0.1 0.5 1 3 5 10

900 U U U U U U

800 U U U U U U

275 U ST ST CH U U

225 ST ST ST CH U U

200 ST ST ST CH U U

100 ST ST ST CH CH U

10 ST ST ST CH CH U

0.1 ST ST ST CH CH U

Note: ST = stable solution, CH = chaotic solution, U = unstable solution. The greater
ν is, the more chartists extrapolate the past into the future in exchange rate fore-
casts. The greater λ is, the faster fundamentalists expect the nominal exchange
rate to go back toward its equilibrium value; values of λ greater than one mean
that fundamentalists expect convergence after a transitional period of volatility.
Other values are Et−3 = 1.000000000, Et−2 = 0.990000000, Et−1 = 1.020000000, φ =
−102, θ = 1.5, ι = 104, and δ = 0.5.

1.10. Simulation results

Table 1 selects some of the solutions to (44) by focusing on the behavior of
chartists and fundamentalists through parameters ν and λ. The simulations
range up 15,000 datapoints, each one with nine decimal places. The other pa-
rameter values that are taken as given in Table 1 are φ = −102, θ = 1.5, ι = 104,
and δ = 0.5. This sets up an environment in which the consumption elastic-
ity of money demand assumes a sensible value (δ = 0.5); the speed at which
forecasts based on charts switch to those based on fundamentals is relatively
high (ι = 104); the market structure is one of strong monopolistic competition
(θ = 1.5); and there is a leaning-against-the-wind foreign exchange interven-
tion (φ = −102). In such a real-world-like scenario, Table 1 shows that chaotic
behavior for the nominal exchange rate is possible.

Table 1 suggests that stability is associated with low values of ν together
with values of λ that are not greater than one. Thus, the nominal exchange
rate is more likely to be stable (1) the less that chartists extrapolate the past
into the future in their forecasts and (2) when fundamentalists do not expect a
transitional period of volatility prior to convergence toward PPP.

Instability is, by contrast, associated with high values of ν; the two rows at
the top of Table 1 exemplify this. Instability is the norm, too, for values of ν
greater than 900 (not shown in Table 1). However, even if the values of ν are low,
instability can also emerge for values of λ greater than one. In particular, the
nominal exchange rate diverges to infinity for values of λ equal to 10 (the last
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column in Table 1). Values of λ that are greater than 10 also generate solutions
that are mostly unstable (not shown in Table 1).

The nominal exchange rate can go chaotic when the presence of charting
seems to induce fundamentalists to expect a transitional period of volatility.
This is illustrated in the columns for λ equal to 3 and 5. In particular, for high
values of ν—such as those for the rows for 100, 200, 225, and 275 in Table 1—
the fundamentalists’ beliefs are in line with actual activity in charting. However,
the possibility of chaos for low values of ν—such as those displayed in the rows
for 0.1 and 10—suggests that self-fulfilling elements can also play a role when
fundamentalists expect a transitional period of volatility prior to convergence,
even if actual charting is negligible. Formal tests for the presence of chaos in
these solutions are provided in the appendix.

2. Discussion

As with the De Grauwe, Dewachter, and Embrechts model, our model is
consistent with a number of stylized facts. The fact that actual nominal
exchange rates seem to exhibit a random-like movement is replicated in the
chaotic solutions to the model. The good news is that such “random’’ motions
are generated by a deterministic equation and, accordingly, accurate short-run
predictions are in theory possible. The bad news, however, is that meaningful
long-run predictions are not possible due to the butterfly effect of chaotic se-
ries. However, even if real-world exchange rates are not chaotic, chaos (fake
randomness) can be thought of as a proxy for genuine randomness.

Figure 2 gives two examples of chaos accompanied by currency crashes for
the solutions with (ν, λ)= (100, 3) and (ν, λ)= (10, 3). Not only does the nom-
inal exchange rate exhibit a random-like behavior but also heteroskedastic-
ity is present. Therefore, the stylized fact that actual behavior of exchange
rates can be described as a martingale process is repeated in this chaotic
model.

Contrary to the so-called news approach—which explains every nominal
exchange rate movement by a given unexpected shock—chaotic exchange
rate models such as this one do not need to rely on random shocks to ex-
plain swings in the nominal exchange rate, because crashes may occur with
no random external influences. “Endogenous’’ crashes, such as the two spikes
emerging in Figure 2 (mentioned above), occur with no change in any of the
fundamental exogenous variables in the model.

This model also provides a case for the importance of macromodels—in
which fundamentals play a role—in explaining nominal exchange rate behavior.
This is in line with recent attempts to revive explanations based on fundamen-
tals to beat the simple random-walk hypothesis. In this model, fundamentals
are captured by the interaction between exchange rate policy and speculative
private behavior together with the existing market structure and the decision to
hold money. Here, fundamentals matter because all these factors influence the
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Figure 2. Chaotic solutions to the model displayed in Table 1. Range: 100–15,100. The first 100
datapoints were skipped to allow for a time series to settle into its final behavior. Other values are:
Et−3 = 1.000000000, Et−2 = 0.990000000, Et−1 = 1.020000000, φ = −102, θ = 1.5, ι = 104, and δ = 0.5.

(Continued on next page)
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Figure 2. (Continued ).

dynamics of the model. Indeed, particular combinations of these fundamentals
can give rise to chaos and thus mimic a random walk.

The results in this article are not incompatible with the fact that little or
no evidence for chaos has been found in foreign exchange data, although a
surprising amount of nonlinear structure remains unexplained (LeBaron, 1994,
p. 397). The results imply that when looking for evidence of chaos in actual
data, we should consider the interference of foreign exchange intervention.
LeBaron (1996) shows that after removing periods in which the Federal Reserve
is active, the ability to predict future nominal exchange rates using technical
trading rules is dramatically reduced. This finding matches with the result that
chaotic behavior of the nominal exchange rate is associated with charting in the
presence of a nonzero amount of foreign exchange intervention. Silber (1994)
also shows in a cross-sectional context that technical trading rules have value
whenever governments are present as major players. Szpiro (1994), too, ar-
gues that an intervening central bank may induce chaos in nominal exchange
rates.
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As far as the chaotic solutions in Table 1 are concerned, one might wish to
verify that stability does not obtain with free float. Indeed, taking the same ini-
tial conditions and parameter values, except now making φ = 0, the previous
chaotic solutions do not necessarily become stable. This finding suggests that
chaos (and instability) can only give way to stability by some sort of appropri-
ate intervention φS 6= 0. Elsewhere (Da Silva, 1998, Section IV.3), I tackled the
problem of how a nonzero equilibrium amount of intervention obtains as foreign
exchange intervention is endogenized in the model presented here. The condi-
tions under which there may be an equilibrium intervention that is compatible
with stability in a chaotic foreign exchange rate market were discussed within
a game-theoretic framework.

Newton’s algorithm was used to solve (44), and this approach raises the
question of whether some of the chaotic solutions are due to the approximation
errors inherent to the algorithm. This possibility cannot be discarded, although
the ability of Newton’s algorithm to produce chaos in otherwise nonchaotic
solutions remains to be proved.

3. Conclusion

This article generalizes the results shown in De Grauwe, Dewachter, and
Embrechts (1993) in a more sophisticated, new open economy macroeconomics
framework. The model of De Grauwe, Dewachter, and Embrechts is blended with
the redux model of Obstfeld and Rogoff (1995, 1996, Chapter 10) to show the
possibility of a chaotic nominal exchange rate for sensible parameter values.
The redux model is modified to consider speculative behavior in the domestic
country, where consumer-producers are assumed to behave like chartists and
fundamentalists at the previous time period.

The model generates multiple equilibria. As far as stable equilibria are
concerned, the solutions to the model show that the exchange rate is more
likely to be stable (1) the less that chartists extrapolate the past into the future
in their forecasts and (2) when fundamentalists do not expect a transitional pe-
riod of volatility prior to convergence toward PPP. Unstable equilibria are, by
contrast, associated with either (1) actual massive charting or (2) the possibility
of charting, which induces fundamentalists to expect a volatility that turns out
to be self-fulfilling. Regarding chaotic equilibria, the model shows that the ex-
change rate can go chaotic when the presence of charting induces fundamen-
talists to expect volatility. Chaos emerges whether or not the fundamentalists’
beliefs are consistent with actual activity in charting; in the case where actual
charting is negligible, a role for self-fulfilling elements is suggested.

The solutions to the model are evaluated for arguably sensible values of its
parameters. Indeed, a real-world-like environment is set up to allow for specu-
lation based on charts and fundamentals to take place; to consider the speed
at which forecasts based on charts switch to those based on fundamentals as
relatively high; to take into account the presence of leaning-against-the-wind
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foreign exchange intervention; to think of the market structure as one of strong
monopolistic competition; and to allow for the consumption elasticity of money
demand to assume a sensible value.

4. Appendix

The data sets were obtained from the time series generated from the chaotic
solutions to the model displayed in Table 1, where the initial values are
1.000000000, 0.990000000, and 1.020000000 and the given parameters values
are φ = −102, θ = 1.5, ι = 104, and δ = 0.5. In the record of 15,000 datapoints,
each point has nine decimal places. Such time series were built up after skip-
ping the first 100 points of an original series to allow for the nominal exchange
rate to settle into its final behavior. The program employed for data analysis was
Chaos Data Analyzer: The Professional Version 2.1©R by J.C. Sprott, copyright
c© 1995 by the American Institute of Physics. Figures 2 and 3 were obtained
using such software. Information regarding the description of statistics as well
as suggestions of analysis strategy were taken from the PC user’s manual of
the program by Sprott and Rowlands (1995).

The pictures displayed in Figure 2 show that the data in these series are
aperiodic. However, they are not genuinely random. There is an underlying
structure that is revealed by “strange attractors’’ (Figure 3).Strange attractors
are suggestive pictures that can be plotted from chaotic series showing some
order in fake randomness. Since the data are aperiodic but not random, they are
chaotic. Indeed, chaos is defined as apparently stochastic behavior occurring
in deterministic systems (Stewart, 1997, p. 12). The probability distributions of
the data sets (not shown) also show fractal shapes associated with chaos. If
these data were genuinely random, bell-shaped Gaussian distributions would
have emerged; if the data were periodic, simple histograms with sharp edges
would have appeared.

Chaotic attractors can be quantified by measures of their dimension and their
largest Lyapunov exponents. The dimension evaluates complexity, whereas
the Lyapunov exponent measures sensitivity to change in initial conditions,
i.e., the famous butterfly effect of chaotic series. Extreme sensitivity to tiny
changes in initial conditions and therefore evidence of chaos is obtained as
long as the largest Lyapunov exponent is positive. A zero exponent occurs
near a bifurcation, periodicity is associated with a negative Lyapunov exponent,
and white (uncorrelated) noise is related to an exponent approaching infinity.
Table 2 shows that the largest Lyapunov exponents calculated from the data
sets are positive; the solution to (ν, λ)= (100, 5)might also be a bifurcation. That
outcome gives evidence of chaos, although colored (correlated) noise can have
a positive exponent, too.

To test whether the evidence of hidden determinism in the data sets is ro-
bust, it is prudent to repeat the calculations of the Lyapunov exponents using
surrogate data that resemble the original data but with the determinism
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Figure 3. Strange attractors of the chaotic solutions displayed in Table 1. Graph of data in two-
dimensional plots. These plots reveal structure in apparently random data. If the data were genuinely
random, “random dusts” would have emerged. Other values are: Et−3 = 1.000000000, Et−2 =
0.990000000, Et−1 = 1.020000000, φ = −102, θ = 1.5, ι = 104, and δ = 0.5.

(Continued on next page)
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Figure 3. (Continued ).

removed. Robustness implies that analysis of these surrogate data should pro-
vide values that are statistically distinct from those calculated from the original
data. Three tests consecutively Fourier-transformed the data sets, randomized
the phases, and then inverse Fourier-transformed the results, and a fourth test
was carried out after simply shuffling the original data values. The Lyapunov
exponents were then calculated, and the results (not displayed in this article)
showed that they lay out of the range of values calculated from the original data
sets. Differences are thus statistically significant, and one can conclude that the
data sets are really chaotic and distinguishable from colored noise.

Capacity dimension and correlation dimension are major measures of dimen-
sion of a chaotic attractor. Values greater than about five for these measures
give an indication of randomness, whereas values less than five provide further
evidence of chaos. Table 2 shows that the capacity and correlation dimensions
calculated from the data sets fall short of 5, which gives an additional piece of
evidence for the presence of chaos in the data sets.

The measures of dimension assumed a proper embedding of 3 and time delay
of 1. This assumption is generous, since the correlation dimensions saturate
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Table 2. Summary of statistics for the chaotic solutions displayed in Table 1.

Largest Lyapunov Largest Lyapunov Capacity Correlation
(ν, λ) exponenta exponent to the base ea dimensionb dimensionb

(200, 3) 0.056 ± 0.010 0.039 ± 0.007 1.175 ± 0.067 1.041 ± 0.027

(275, 3) 0.007 ± 0.005 0.005 ± 0.003 1.018 ± 0.058 1.016 ± 0.038

(225, 3) 0.052 ± 0.010 0.036 ± 0.007 1.101 ± 0.063 1.009 ± 0.026

(100, 3) 0.072 ± 0.012 0.050 ± 0.008 1.196 ± 0.068 1.000 ± 0.043

(100, 5) 0.005 ± 0.005 0.003 ± 0.003 0.963 ± 0.055 1.031 ± 0.026

(10, 3) 0.022 ± 0.006 0.015 ± 0.004 1.085 ± 0.062 1.033 ± 0.019

(10, 5) 0.063 ± 0.010 0.044 ± 0.007 0.937± 0.054 1.027 ± 0.005

(0.1, 3) 0.084 ± 0.012 0.058 ± 0.008 1.012± 0.058 1.049 ± 0.029

(0.1, 5) 0.070 ± 0.011 0.049 ± 0.008 0.944± 0.054 1.043 ± 0.025

aCalculations considered the proper embedding dimension as given by 3, using three time steps
and an accuracy of 10−4.

bCalculations considered the proper embedding dimension equal to 3 and time delay equal to 1.
Note: Evidence of chaos is here associated with the largest Lyapunov exponents that are positive
along with capacity and correlation dimensions that fall short of about 5. Other values are Et−3 =
1.000000000, Et−2 = 0.990000000, Et−1 = 1.020000000, φ = −102, θ = 1.5, ι = 104, and δ = 0.5.

at around 1. The proper embedding dimension of 3 was also assumed in the
calculation of the Lyapunov exponents, using three time steps and an accuracy
of 10-4. Further discussion on these technical methods is provided by Sprott
and Rowlands (1995).
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