
My Favorite Web Sites
Home Page
Inside the Vault
EBE index
SDI directory
The High Energy Laser Systems Test Facility (HELSTF) is located at White Sands Missile Range, New Mexico. HELSTF
became operational on September 6, 1985 when the Air Force conducted the first Lethality and Target Hardening (LTH-l)
program test for the Strategic Defense Initiative Organization (SDIO). HELSTF has been managed by the U.S. Army Space
and Strategic Defense Command (USASSDC) since October 1990. Prior to that, the facility was under the command of
Commander, White Sands Missile Range. Primary support for operation and maintenance of the SDC-managed facility is
currently provided by Lockheed Engineering and Science Company (LESC). The Navy is responsible for the operation and
maintenance of the MIRACL and the SEALITE Beam Director through its contractors, TRW and Hughes Aircraft.
HELSTF is designated as the Department of Defense (DoD) National Test Facility for high energy laser test and evaluation.
HELSTF is the home of the Mid Infrared Advanced Chemical Laser (MIRACL), the United States' most powerful laser,
which is a CW, megawatt class deuterium-fluoride laser operating in a band from 3.6 to 4.2 microns. In the more than ten
years since operations began, HELSTF has supported a broad range of both laser and non-laser related test activities. High
energy laser tests have included damage and vulnerability testing for all three uniformed services as well as materials and
chemical research for industry and academia. HELSTF represents an approximate $800 million investment, with about $80
million of that in military construction funds.
The Mid-Infrared Advanced Chemical Laser (MIRACL) was the first megawatt-class, continuous wave, chemical laser built
in the free world. It is a deuterium fluoride (DF) chemical laser with energy spectra distributed among about 10 lasing lines
between 3.6 and 4.2 microns wavelength. Since it first lased in 1980, it has accumulated well over 3000 seconds of total
lasing time. It remains the highest average power laser in the US.
MIRACL operation is similar to a rocket engine in which a fuel (ethylene,
C2H4) is burned with an oxidizer (nitrogen trifluoride, NF3). Free, excited
fluorine atoms are one of the combustion products. Just downstream from
the combustor, deuterium and helium are injected into the exhaust.
Deuterium combines with the excited fluorine to give excited deuterium
fluoride (DF) molecules, while the helium stabilizes the reaction and
controls the temperature. The laser's resonator mirrors are wrapped around
the excited exhaust gas and optical energy is extracted. The cavity is actively
cooled and can be run until the fuel supply is exhausted. The laser's output
power can be varied over a wide range by altering the fuel flow rates and
mixture.
The laser beam in the resonator is approximately 21 cm high and 3 cm wide.
Beam shaping optics are used to produce a 14 cm square beam shape which is propagated through the rest of the beam train.
Diagnostics for evaluating the beam shape, absolute power and intensity profile are used on each firing of the laser. The
beam can be directed to a number of different test areas or to the SLBD.
Capabilities
Megawatt-class variable power, with good beam quality
Continuous-wave mid-infrared (3.8 microns)
Reliable operation demonstrated in more than 150 lasing tests and over 3000 seconds of lase time during the last
decade.
70 seconds maximum lase duration.
Programs Supported
Static Target Vulnerability Tests
Materials and Coatings
Aircraft and Missile Components
Effectiveness of Laser Hardening Techniques
Flying Target Vulnerability Tests
Subsonic and Supersonic Missile Engagements
Propagation Phenomenology
Effects of turbulence and thermal blooming on HEL beam propagation
Tracking in Presence of High-Power Beam
Effect of Obscurants
Laser Technology R&D
High-Power Adaptive Optics
Material Windows
Gratings and Coatings
HELLO Commercialization Tests
Advanced Coatings
Cloud Boring
Chemical Processing
Congress canceled the Navy SEALITE program, a self-defense lethality
demonstration using the Mid-Infrared Advanced Chemical Laser (MIRACL), in the
fall of 1983 and directed the MIRACL be installed at HELSTF to support a variety
of tests for DoD. The SEALITE Beam Director (SLBD) is mounted on top of Test
Cell 1. It consists of a large aperture (1.8 meter) gimbaled telescope and optics to
point the MIRACL or other laser beam onto a target. The high power clear aperture
is 1.5 meters. The remaining 0.3 meters is normally reserved for a tracker using the
outer annulus of the primary mirror. The system is extremely agile and capable of
high rotation and acceleration rates. The SLBD weighs 28,000 pounds, of which
18,000 are on the movable portion. The SLBD can also be used as a sensor
platform.
The telescope is capable of focusing from a minimum range of 400 meters to
infinity. A suite of infrared and visible sensors on the top of the gimbal (off axis from the HEL aperture) is used to acquire
and track the target. These sensors look through a 40 cm telescope that can focus over the same range as the SLBD telescope
and also correct for parallax between the two lines of sight. Boresight between the SLBD telescope and the sensor is
maintained by an automatic laser alignment system. In addition, an aperture sharing element in the high power beam path
makes it possible to track a target through the full 1.5 meter telescope aperture even when the high power beam is
propagating.
These elements have been combined into an integrated system that can acquire and track targets at extended ranges, accept a
very high energy beam, focus and aim the beam on a moving target, and keep this beam at the same position as long as
necessary to destroy or disable the target. The SLBD has successfully engaged five BQM-34 drones as well as a supersonic
Vandal missile, all at tactically significant ranges.
In addition to directing the high energy laser beam, the HELSTF SLBD has been used very successfully to passively track
and image missiles in flight. The inherently precise pointing of the device and its ability to track very high speed targets
make it an ideal platform for capturing in-flight imagery. The SLBD has been used as a sensor platform for tracking and
imaging a number of Theater Missile Defense (TMD) launches and intercepts, including LANCE, ERINT, and LEAP. A
1000 frame-per-second, digital, infrared camera has been used to collect two-dimensional intercept measurements from
targets and interceptors at over Mach 6 closure rates. Calibrated infrared sensors placed in the SLBD's optical train have
been used to collect IR imagery for plume and hardbody thermal characterization.
Capabilities
High line-of-site rates and accelerations
Primary mirror diameter: 1.8m
Focus range: 400m to infinity
Primary track sensor: 8 to 12 micron FLIR
FLIR track sensor field of view: 4 X 5 micro radians
Shared aperture visible track sensor field of view: 0.3 X 0.3 micro radians
SLBD Passive Imaging Sensor Characteristics
SENSOR WAVE- FIELD OF ARRAY SIZE FRAME RATE APERTURE
BAND VIEW
LWIR 8-12 m 700 rad 128 x 128 up to 1000 1.5 m
fps
MWIR 3-5 m 700 rad 128 x 128 up to 1000 1.5 m
fps
FLIR 8-12 m 4 x 5 scanned 60 Hz/264 40 cm
mrad lines
NFOV TV visible 5 x 6.5 510 x 492 60 Hz/264 40 cm
mrad lines
Wide FOV visible 6.6 x 8.8 510 x 492 30 Hz 90 mm
mrad
Wide FOV AMBER 3-5 m 12 mrad 128 x 128 up to 109 50 mm
Hz
MIT High Frame visible 100 rad 64 x 64 2000 Hz 1.5 m
Rate to 1 mrad
Tests Supported
High-power dynamic with flying drone (BQM 34)
Conventional defense initiative with flying drone
High velocity target test with VANDAL missile
High altitude target tests with flying drone
Missile and plume tests using the 1.5m aperture
Radiometrically calibrated images
Spectral radiometry
SOURCES
0605605A DOD High Energy Laser System Test Facility (HELSTF)
Mid-Infrared Advanced Chemical Laser (MIRACL)
SEALITE Beam Director (SLBD)
[EXCERPT] DoD News Briefing Thursday, December 11, 1997 - Discussion about the test of the MIRACL laser
against a satellite.
U.S. LASER WEAPON TEST FOREIGN MEDIA REACTION DAILY DIGEST USIA Wednesday, 22 October
1997
PENTAGON/LASER TEST VOA 23 October 1997
[EXCERPT] Defense Department News Briefing 23 October 1997 - Discussion of the MIRACL laser test,
including how many bursts were actually fired at the satellite, whether they got data back from the satellite, and
whether or not the test was successful.
[EXCERPT] Defense Department News Briefing 09 October 1997 - On MIRACL, two opportunities to test that
laser were missed last week. The Secretary has asked the Army to continue to look for opportunities to test that laser
before the target satellite goes into eclipse later this month.
[EXCERPT] Defense Department News Briefing 07 October 1997 - "Because of cloud cover at the White Sands
Missile Range in New Mexico last night, the MIRACL test did not take place. We had also attempted a test of
MIRACL on Saturday night, but because of some technical difficulties, that test also did not take place."
U-S LASER TEST VOA 02 October 1997
U-S LASER TEST VOA 02 October 1997
SECRETARY OF DEFENSE APPROVES LASER EXPERIMENT TO IMPROVE SATELLITE PROTECTION
October 2, 1997 - Secretary of Defense William S. Cohen today has approved an experiment being conducted by
the U.S. Army's Mid-Infra-Red Advanced Chemical Laser (MIRACL) located at White Sands Missile Range, NM.
The satellite that will be used for the test is the U.S. Air Force Miniature Sensor Technology Integration program's
third satellite (MSTI-3).
Got this from: FAS.org