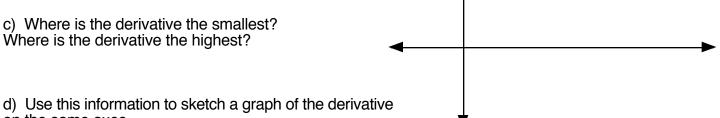
CLASSWORK 65

- 1. Find the derivative of each function.
- a) y = (x + 4)(2x 3)


b) $y = 3x \ln x$

c) $y = 7 \cos x$

2. a) Find the exact slope of the function $y = x^4 \ln x$ at x = 2

- b) Check your answer by doing the average slope between x = 2 and x = 2.01.
- c) When does the graph have a slope of 0?

- 3. Sketch a graph of the function $y = e^x$ on the axes below.
- a) Why does the function never hit zero?
- b) Where is the derivative positive? Where is it negative?
- c) Where is the derivative the smallest? Where is the derivative the highest?
- on the same axes.

4. Let's investigate the derivative of $y = e^x$ with numerical methods.

х	$f(x) = e^x$	2nd point near	'x	Δу	Δх	slope over the interval	Х
-1		(-1.01,)				-1
-0.5		(51,)				-0.5
0		(.01,)				0
0.5		(.51,)				0.5
1		(1.01,)				1
2		(2.01,)				2
3		(3.01,)				3
4		(4.01,)				4

What is the derivative of $y = e^x$?

Use the calculator to show you are right.

- 5. Find the derivative of $y = x e^x$
- 6. Find the derivative of $y = e^x + \ln x$
- 7. Find the derivative of $y = \sin x \cdot e^x$

8. Find the derivative of each function in the chart below. What pattern do you notice?

function	derivative	function	derivative
y = e ^x		$y = (e^x)^2$	
y = sin x		y = sin² x	
y = ln x		$y = (\ln x)^2$	
y = cos x		y = cos² x	
$y = e^x$		$y = (e^x)^3$	
y = sin x		y = sin³ x	
y = ln x		$y = (\ln x)^3$	
y = cos x		y = cos³ x	