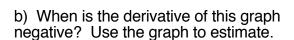
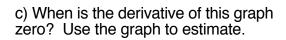
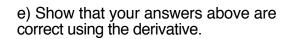
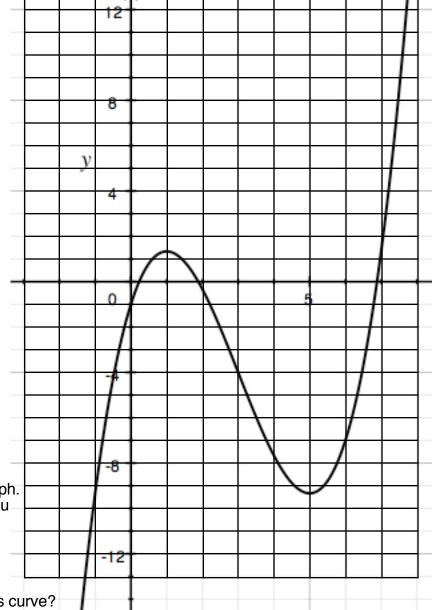

T


Classwork 53


- 1. a) Label the graph below with **0** where the derivative is zero, **+** where the derivative is positive, and where the derivative is negative.
 - b) Label the graph with $\bf M$ in places where the slope is at a max (most positive) and $\bf m$ where the slope is at a minimum (most negative)
 - c) Use your answers to (a) & (b) to sketch a graph of the derivative on the same axes.




a) When is the derivative of this graph positive? Use the graph to estimate.

- f) Graph the derivative on this same graph.
 You should use your calculator to help you get an accurate graph.
- g) What is the **second derivative** of this curve?
- h) Graph the **second derivative** on the same axes. Use your calculator to get an accurate graph.
- i) What does the **second derivative** tell you about the derivative?

about the original graph???

3. a) Explain using calculus why a line has no maximum or minimum.
b) Explain using calculus why a line has no curvature.
4. a) Explain using calculus why a parabola always has both regions of positive slope and regions of negative slope.
b) What is the only coefficient that matters in whether a parabola opens upward or downward? (Consider the general form $y = ax^2 + bx + c$)
c) Explain using calculus why a parabola has either negative or positive curvature but never both.
 a) Sketch a graph of the function y = x⁴
b) Why does the function never dip into negatives?
c) Why is the slope sometimes positive and sometimes negative?
d) Why is the curvature always positive?

a) Sketch a graph of the function $y = x^4 - x^2$ b) When is the function negative?
c) What are the maxima and minima of the function?
d) Where does the curvature change?