Classwork 34

1. Find the derivative of $f(x) = 3x^6$ the long way.

- 2. a) Write a general rule for the derivative of a function $f(x) = Cx^n$
 - b) Prove that this rule is actually correct using the definition of a derivative.

3. Find the derivative of each function using the rule.

a)
$$f(x) = 3x^7$$

b)
$$f(x) = 6x^2 + 3x + 9$$

b)
$$f(x) = 6x^2 + 3x + 9$$
 c) $f(x) = 4x^3 - 2x^2 + 5x + 1$

- 4. Find the slope of each of the functions above at x = 3
- a)

b)

- C)
- 5. When does the function $y = 1/3x^3 + 3x^2 + 6x + 7$ have a slope of 1?

6.	Find the equation of the tangent line to each point at the given value.	Then graph both functions to
sho	ow you are correct.	

- a) Tangent to the equation $y = 2x^3$ at x = 1 b) Tangent to the equation $y = 1/2x^4$ at x = 2

7. Fill in the box with the missing exponent. (Yes, I know this is review.
$$:>$$
)

a.
$$3^4 \cdot 3^{2} = 3^9$$

$$3^4 \cdot 3 = 3^9$$
 b. $5^2 \cdot 5 = 5^{10}$ c. $4^3 \cdot 4 = 4^5$

c.
$$4^3 \cdot 4^{4} = 4^5$$

d.
$$6^5 \cdot 6 = 6^0$$

d.
$$6^5 \cdot 6 = 6^0$$
 e. $2^4 \cdot 2 = 2^0$ f. $x^1 \cdot x = x^0$

f.
$$x^1 \cdot x^{\perp} = x^0$$

8. Based on your answers to (d), (e), and (f), what does a negative exponent have to mean?

Write a formula for X^{-n} .

9. Find the derivative of
$$f(x) = 1$$
 using the definition.

10. Find the derivative of
$$f(x) = \frac{1}{x^2}$$
 using the definition.

Practice Problems

- 1. When does the graph of $y = 5x^3$ have a slope of 360?
- 2. What is the slope of $y = 1/2x^4 + 5x^2 + 6$ at x = 2?
- 3. Find the derivative of $y = \frac{1}{x^4}$ using the rule.