Classwork 33

1. Find the derivative of each function using the definition.

a)
$$f(x) = 5x$$

b)
$$f(x) = x - 2$$

2. Find the derivative of each function using the rule.

a)
$$f(x) = x^7$$

b)
$$f(x) = x^2 + 3x$$

c)
$$f(x) = x^5 - x^4 + 8$$

3. Find the slope of each of the functions above at x = 2

4. When does the function $y = x^3$ have a slope of 48?

5. Fill out each chart.

х	X ³	Δy	х	2x ³	Δy	х	3x³	Δy	х	4x³	Δy
0			0			0			0		
1			1			1			1		
2			2			2			2		
3			3			3			3		
4			4			4			4		
5			5			5			5		

What happens to the rate of change when you put a coefficient in front of the function?

6.	a) Predict the derivative of $y = 5x^3$ b) Use the definition to prove that this derivative is correct.
7.	a) Write a general rule for the derivative of a function $f(x) = Cx^n$ b) Prove that this rule is actually correct using the definition of a derivative.
sh	Find the equation of the tangent line to each point at the given value. Then graph both functions to ow you are correct. Tangent to the equation $y = 2x^3$ at $x = 1$
b)	Tangent to the equation $y = 1/2x^4$ at $x = 2$
c)	Tangent to the equation $y = (x^4)/4$

9. Find the derivative of $f(x) = 1/x^2$ using the definition.

Practice Problems

- 1. Find the derivative of $y = 5x^4 + 7x 8$
- 2. Find the derivative of $y = -2x^3 8x^2 + 7x$
- 3. Find the derivative of $y = \frac{1}{x^3}$