Classwork 32

1. Find the derivative of each function using the definition.

a)
$$f(x) = x^2$$

b)
$$f(x) = x^3$$

c)
$$f(x) = 7$$

d)
$$f(x) = 4x$$

2. Find the slope of each function at x = 3

3. Find the derivative of $y = x^3 + x^2 + x$.

- 4. In general, for a function f(x) = g(x) + h(x), the derivative f'(x) =
- 5. Fill out each chart.

X	X ³	Δy	X	2x³	Δy	Х	3x³	Δy	Х	4x³	Δy
0			0			0			0		
1			1			1			1		
2			2			2			2		
3			3			3			3		
4			4			4			4		
5			5			5			5		

What happens to the rate of change when you put a coefficient in front of the function?						
6.	a) Predict the derivative of $y = 5x^3$					
	b) Use the definition to prove that this derivative is correct.					
7.	a) Write a general rule for the derivative of a function $f(x) = Cx^n$					
	b) Prove that this rule is actually correct using the definition of a derivative.					
8. sh	Find the equation of the tangent line to each point at the given value. Then graph both functions to ow you are correct.					
a)	Tangent to the equation $y = 2x^3$ at $x = 1$					
b)	Tangent to the equation $y = 1/2x^4$ at $x = 2$					
,						

c) Tangent to the equation $y = (x^4)/4$

9. Find the derivative of f(x) = 1 using the definition.

Practice Problems

- 1. Find the derivative of $y = 3x^8 + 2x + 5$
- 2. Find the derivative of $y = 7x^4 2x^2 + 10x$
- 3. Find the derivative of $y = \frac{1}{x^4}$