
1. Expand $(x + 1)^8$.

2. Using the graph, answer the following questions.

a) Find $\lim_{x\to\infty} f(x)$

b) Find $\lim_{x \to -\infty} f(x)$

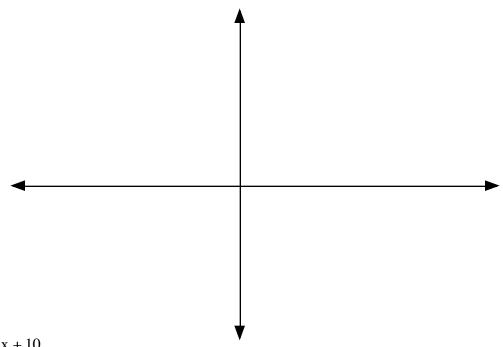
c) Find $\lim_{x \to -2} f(x)$

- d) Find $\lim_{x \to 3} f(x)$
- e) If $f(x) = \frac{x^2 9}{x^2 + 6x + 8}$, pick an x value nearby to show that your limit answer makes sense.
- -An x- value near ∞:

- An x- value near -∞:

-An x- value near -2:

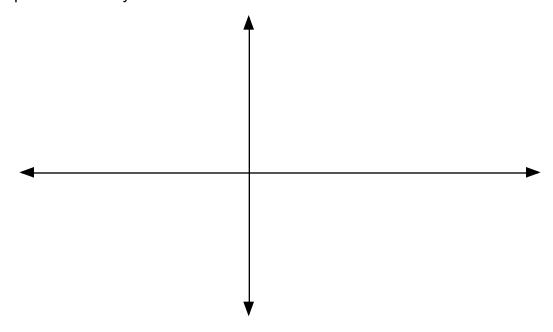
-An x-value near 3:


3. Fill out the chart below for $y = \frac{x^2 + 7x + 10}{x + 2}$. (Hint: use the table feature & tblset on your calculator.)

X	У	<u>X</u>	У
-1.8		-2.2	
-1.9		-2.1	
-1.95		-2.05	
-1.99		-2.01	
-1.999		-2.001	
-1.9999		-2.0001	

Predict the value for x = -2.

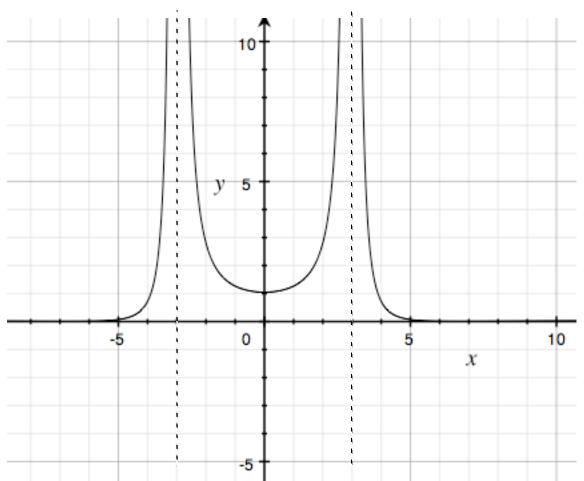
What actually happens if you plug in x = -2?


Graph this function using the calculator & sketch a graph on your paper.

Find
$$\lim_{x \to -2} \frac{x^2 + 7x + 10}{x + 2}$$

4.a) Find $\lim_{x \to \infty} \sqrt{\frac{x^4 - 16}{2x^2 + 5}}$ using the table function on your calculator.

b) Use a graph to show that your answer is correct.



- 5. a) Find $\lim_{x\to 4} \frac{x^2 7x + 12}{x-4}$ using the table function.
 - b) Describe the graph at x = 4
 - c) Why can't you just evaluate the original expression at x = 4 to find the limit?
 - d) Is there an easier way we could do this problem?

Practice Problems

- 1. Use the graph below to find the limits.
- a) $\lim_{x \longrightarrow -3} f(x)$

b) $\lim_{x \to \infty} f(x)$

2. Use a calculator (or your imagination) to find $\lim_{x \to \infty} \frac{3x^2 + 10}{x^2 - 4}$