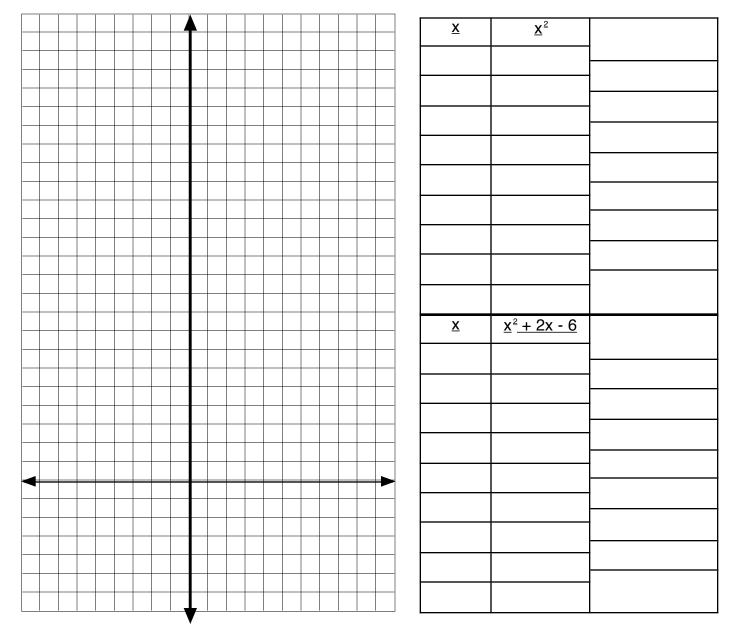
## Classwork 28

1. a. Let 
$$f(x) = 3x - 5$$
. Find  $f(7)$ .

b. Let 
$$f(x) = 3x - 5$$
. Find  $f(x + h)$ .

c. Let 
$$f(x) = x(x - 1)$$
. Find  $f(3 + h)$ 

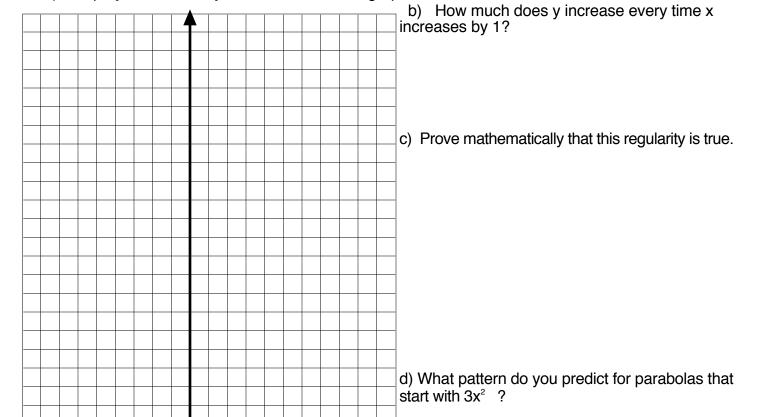
2. Let's say we are dealing with the graph of  $f(x) = x^2$ 


a) Investigate the slope around x = 5 using the chart. This time, however,  $\Delta x$  is given.

| First point                                                                           |  | Second point |     | Δx<br>" <b>h</b> " | Δ f(x) | slope |
|---------------------------------------------------------------------------------------|--|--------------|-----|--------------------|--------|-------|
| 3                                                                                     |  |              |     | .5                 |        |       |
|                                                                                       |  |              |     | .1                 |        |       |
|                                                                                       |  |              |     | .05                |        |       |
|                                                                                       |  |              |     | .01                |        |       |
|                                                                                       |  |              |     | .001               |        |       |
| So in general, in terms of only <b>x</b> , <b>h</b> , and <b>f(x)</b> (A) (B) (C) (D) |  |              | (E) | (F)                | (G)    |       |
| х                                                                                     |  |              |     |                    |        |       |
| First point                                                                           |  | Second point |     | Δx<br>"h"          | Δ f(x) | slope |

c) Write a limit to express the exact slope at a point x.

d) Could we manipulate the limit to get the right answer for x = 3?


3. a) Graph  $y = x^2$  on the graph below and fill out the table.



- b) How much does y increase by every time x goes up by 1?
- c) Write a formula for that increase.
- d) Let the first y value be  $x_1$ . Prove your regularity mathematically.

e) Use the second chart for the function  $y = x^2 + 2x - 6$  and then **graph it on the same axes.** Does the same pattern hold?

4. a) Graph  $y = 2x^2$  and  $y = 2x^2 - 4x + 1$  on the graph below.



e) What pattern do you predict for **c**x<sup>2</sup>? Can you prove it?

f) Discuss how slope changes as x changes in a parabola.

## **Practice Problems**

- 1. Evaluate each expression for  $f(x) = \sqrt{x} x$
- a) f(4)

b) f(m)

- c) f(4x<sup>2</sup>)
- d) f(x + h)
- 2. Write, but do not solve or simplify, **a derivative limit** to find the slope at a point under each condition:
- a)  $f(x) = \sin x$  at x = 2
- b) f(x) = 3x + 7 at x = 1
- c)  $f(x) = x^2 x$  at x = 3
- d) f(m) = log m in general for any value of x.