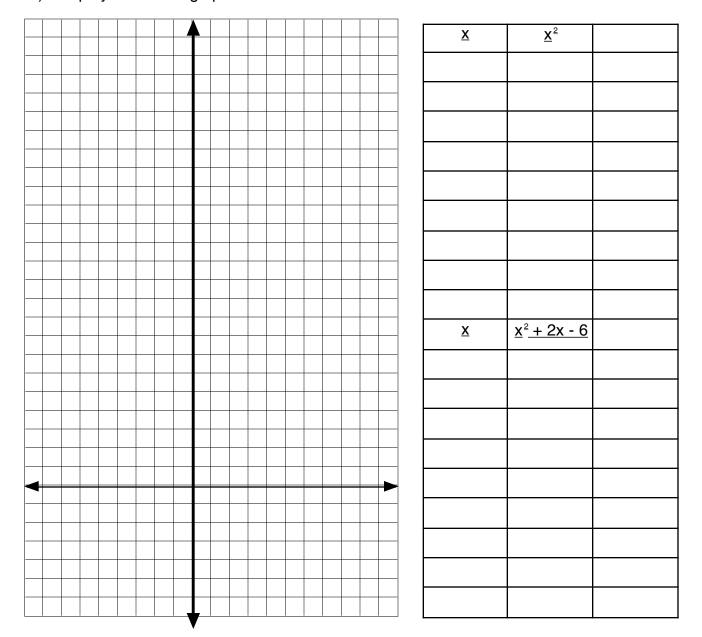
Classwork 27

1. a. Let $f(x) = x^2$. Find f(x + h).

b. Let $f(x) = x^3$. Find f(x + h)

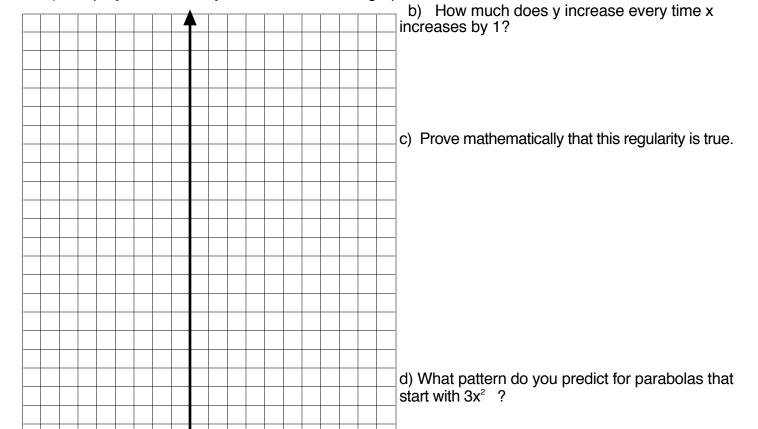
- c. Let f(x) = 3x + 1. Find f(x + h). d. Let $f(x) = x^2 x$. Find f(x + 3)


2. Let's say we are dealing with the graph of $f(x) = x^2$

a) Investigate the slope around x = 3 using the chart. This time, however, Δx is given.

First point		Second point		Δx "h"	Δ f(x)	slope
3				.8		
				.2		
				.1		
				.05		
				.001		
So in general, in terms of only x , h , and f(x) (A) (B) (C) (D)			(E)	(F)	(G)	
х						
First point		Second point		Δx " h "	Δ f(x)	slope

- c) Write a limit to express the exact slope at a point x.
- d) Could we manipulate the limit to make this happen?


3. a) Graph $y = x^2$ on the graph below and fill out the table.

- b) How much does y increase by every time x goes up by 1?
- c) Write a formula for that increase.
- d) Let the first y value be x_1 . Prove your regularity mathematically.

e) Use the second chart for the function $y = x^2 + 2x - 6$ and then **graph it on the same axes.** Does the same pattern hold?

4. a) Graph $y = 2x^2$ and $y = 2x^2 - 4x + 1$ on the graph below.

e) What pattern do you predict for cx2? Can

you prove it?

f) Discuss how slope changes in a parabola.

Practice Problems

1. Use a small Δx near the point given to find the approximate slope.

a)
$$f(x) = 4x - 1$$
 $x = 7$

b)
$$f(x) = 3x^2 - 4$$
 $x = 2$

c)
$$f(x) = \log x$$
 $x = 5$

2. Evaluate each expression for $f(x) = x^2 + x$

c)
$$f(x + 1)$$
 d) $f(x + h)$

d)
$$f(x + h)$$