Classwork 26

1. FUN with FUNction notation!!!

- a) Let f(x) = 3xFind:
 - i. f(2)
- ii. f(5)
- iii. f(n)
- ίV. $f(C^2)$

- b) Let $f(x) = 2x^2$ Find:
 - i. f(4)

- ii. f(a)
- iii. f(x + 1) iv. f(a + b)

- c) Let $f(x) = \sin x \log x$ Find:
 - i. f(7)

- ii. f(3 + x) iii. f(x + h) iv. f(z)

- d) $f(x) = x^5$ Find f(x + 1).
- 2. Let's say we are dealing with the graph of $f(x) = \frac{\frac{1}{3}x^4 5x^2 + 1}{x^2 + 2x + 4}$
- a) Investigate the slope around x = 1 using a chart.

First point		Second point		Δx " h "	Λ f(y)	slope
Х	f(x)	х	f(x)	"h"	Δf(x)	Slope
1						

b) What is Δx approaching?

What is $\Delta f(x)$ approaching?

b) Investigate the slope around x = 5 using the chart. This time, however, Δx is given.

First point		Second point		Δx " h "	Δ f(x)	slope
5				.8		
				.2		
				.1		
				.05		
				.001		
So in ger	neral, in terms of onl (B)	y x , h , ar (C)	(E)	(F)	(G)	
х						
First point		Second point		Δx "h"	Δ f(x)	slope

c) What did you do to find the function value for the first point?

Use that to write a general formula for box (B) above.

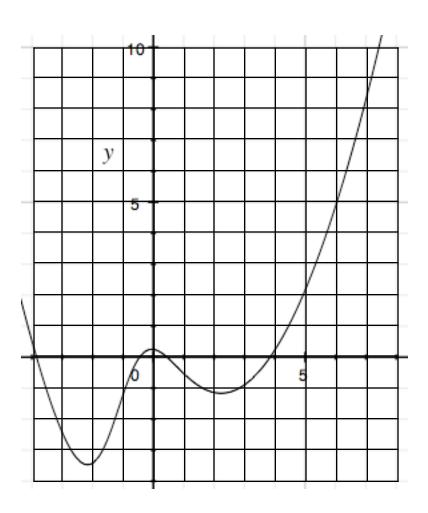
d) What did you do to find the x value of the second point?

Use that to write a general formula for box (C) above.

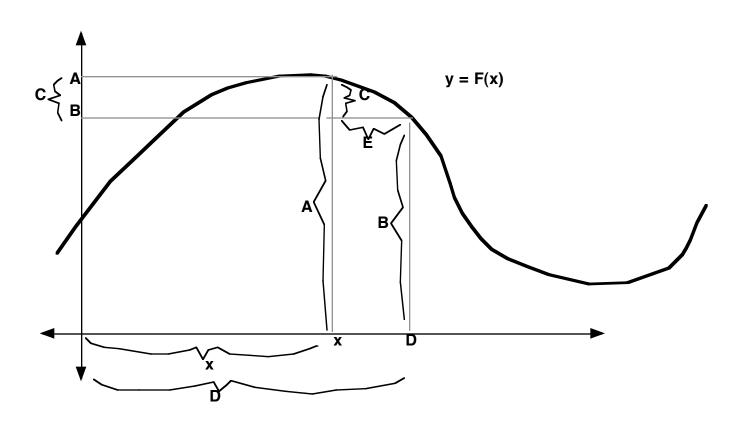
e) What did you do to find the y value of the second point?

Use that to write a general formula for box (D) above.

f) What did you do to find the $\Delta f(x)$?


Use that to write a general formula for box (F) above.

g) What did you do to find the slope?


Use that to write a general formula for box (G) above.

- j) What are the only two pieces of information you needed to fill out the entire chart?
- i) Write a limit to express the exact slopeat a point x.

Graph for #2

3.Label the drawing to show where each expression below goes (and what it represents). 1. F(x) 2. h 3. F(x + h) 4. x + h 5. F(x + h) - F(x)

Practice Problems

1. Use a small Δx near the point given to find the approximate slope.

a)
$$f(x) = 1/2x - 1$$
 $x = 10$

b)
$$f(x) = x^3 - x \quad x = 2$$

c)
$$f(x) = \log x$$
 $x = 2$

- 2. Evaluate each expression for $f(x) = x^3/2$
- a) f(3)

b) f(m)

- c) f(x + 1) d) f(x + h)