Classwork 25

- a) Use the graph to approximate the slope at x = 6.
- b) Use the graph to approximate the slope at x = 2
- c) Use the graph to approximate the slope at x = 8
- d) What could we do with a table to zoom in to a specific point and find the slope?

1. Use the graph below of $y = 1/2x^2 - 3x + 1$ to answer the questions. 0

e) Approximate the slope at x = 6 by using a series of points near x = 6.

a 001100 (oi poirito riodi X – o.		-0			
	First point		Second point		۸۷/	alono
Х	у	Х	у	Δx "h"	Δy	slope
6		6.5				
6		6.1				
6		6.01				
6		6.001				

 Δx ("h") is approaching : Δy is approaching :

 $\Delta x/\Delta y$ is approaching:

f)Approximate the slope near x = 2 by using the chart.

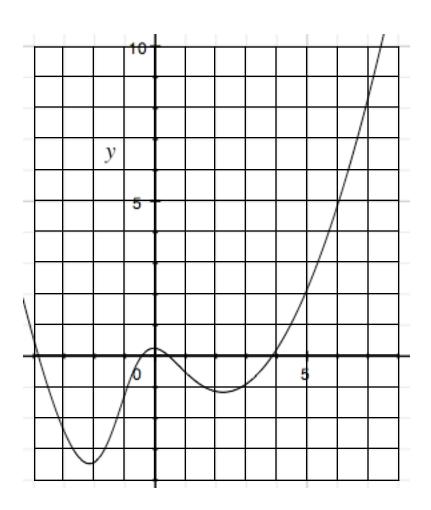
First point		Second point		Δx	Δу	slope
Х	У	Х	у	"h"	Ду	Зюрс
2		2.4				
2		2.1				
2						
2						

g) Finish the chart to approximate the slope near x = 8.

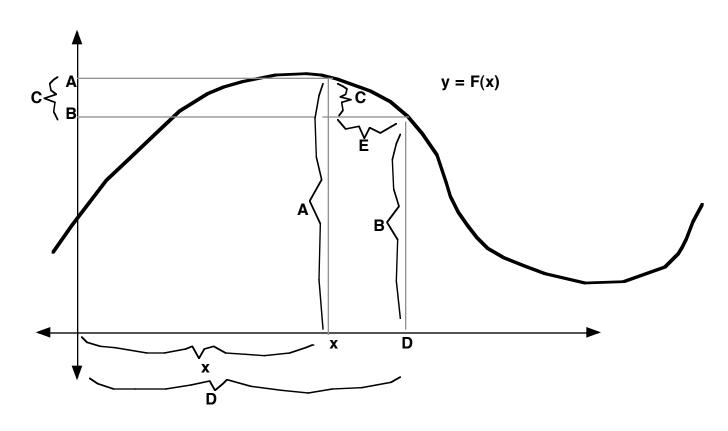
First point		Second point		Δx	۸۷	slope
Х	у	Х	у	"h"	Δy	Slope

2. Let's say we are dealing with the graph of
$$f(x) = \frac{\frac{1}{3}x^4 - 5x^2 + 1}{x^2 + 2x + 4}$$

a) Investigate the slope around x = 1 using a chart.


First point		Second point		Δχ	Λ f(y)	alana
Х	f(x)	х	f(x)	Δx " h "	Δ f(x)	slope
1						

b) Investigate the slope around x = 5 using the chart. This time, however, Δx is given.


First point		Second point		Δx " h "	Δf(x)	slope	
5				.8			
				.2			
				.05			
				.001			
So in general, in terms of only x , h , and f(x)							
х							

- c) Use the graph on the next page to check your answers
- d) Write a limit to express the exact slope at a point ${\bf x}.$

Graph for #2.

3.Label the drawing to show where each expression below goes (and what it represents). 1. F(x) 2. h 3. F(x + h) 4. x + h 5. F(x + h) - F(x)

Practice Problem

1. Use a small Δx near the point given to find the approximate slope.

a)
$$f(x) = 2x + 5$$
 $x = 8$

b)
$$f(x) = 2x^2 + 5x$$
 $x = 1$

c)
$$f(x) = \cos x$$
 $x = 8$